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0 Chapter O

0.1 For n=5,8,12,20, and 25, find all positive integers less than n and relatively prime
to n.

#7e. relatively prime Bi2 “AEH"WER, frlEHRES/NG n HE n BENTE
IERBEC B0 n = 12 B, BMATLLREH 12 = 223, MELR 12 ZEH/NR 12 1
IEREE, WMREE “rah"HE 2 RAS 3 WERHBET.

0.2 Determine

ged(24-3%2.5-77 | 2.3%.7-11)
and
lem(2%-32.5 , 2.3%.7-11).
0.3 Determine 51 mod 13,
342 mod 85,
62 mod 15,
10 mod 15,

(82-73) mod 7,
(51 +68) mod 7,
(35-24) mod 11,
and (47-68) mod 11.

78, « modn MEREME o % n BRZEBERE, Fla0 17 #% 5 Rk 2, Frll 17
mod 5 = 2,

RATREEHEE mod EEREIEM, HEE L MTPEREREERE T, FlIAHMAR:
#Ete mod 12, AT 14 BRI LIERZE T4 14 mod 12 = 2 Bh XEE 2 EHHE
mod 7o



0.4 Find integers s and ¢ such that 1=7-s+11-¢. Show that s and ¢ are not unique.
7. RIE—EEEHNEIRE: Find integers s and ¢ such that 1=69-s+31-¢.

69 = _31-247, (1)
;év (2)
(3)

) =>1 = 7-3-2

3

7T-(31-7-4)-2
= 7-31-2+7-8
7-9-31-2

B

(69-31-2)-9-31-2
69-9-31-18-31-2
69-9-31-20
= s=9, t=-20.

HEREE] ged (7,11) K ged (69,31) #hE L. —BkER, HITH
ged (a,b) =1 < 3s,t € Z such that as+ bt = 1. (4)

EEREER, IREMEEE a,b AE (relatively prime) i@ ged (a,0) = 1, IR EE £
EEMM, ENRERGE, IRADEEiMEs T,
HH, RFHEER

ged (a,b) =d = 3s,t € Z such that as + bt = d. (5)
0.6 Suppose a and b are integers that divide the integer ¢. If a and b are relatively

prime, show that ab divides c¢. Show, by example, that if a and b are not relatively
prime, then ab need not divide c.

#78. Since a | c and b | ¢, suppose that
¢c=aq, C:bq27 QI7Q2€Z- (6)
Since ged (a,b) =1
4)

= ds,t € Z such that as + bt =1

multiplying ¢

ab(sqs + )=c

£ asc+ =c

E as(bga) + =c
= ab(sqo) + =c
=

=

ab | c.

;ZD% ng (a,b) +1 H%E@ﬁ{ﬁ”ﬁa/g/*ﬂo



0.7 If a and b are integers and n is a positive integer, prove that @ mod n =b mod n

if and only if n divides a - b.

#7e. B o mod n B, MIRIK AR REREH G, FHHLE—LREEEFHN, &
BRI M C B BT R EE .

FEE— T R TR BB (divide)”, o BBR b UEEELE o 2 0 R, BEH b2 o
RSB, B AR R ¢, 15 b= aq, TAFIRCIE a | b, HHF a #0,

HMIEFESE, o mod n RE—EHEF, EEBFERE o B n BRIBRIERE, AT o
mod n = b mod n KERME o R b # n RZEERBEGR &R, HFHE « B b
B o [, ARFERECHIESE, B2 o = b (mod n). FrllExercise 0.7HIE ERE

a=b (modn)<n|(a-0) (7)
TR T,
a=b (mod n) « ERANRFR
< a modn=>b modn « AR
< a+n=q..r, brn=q..r < BUNARIRFE, FESM~
< a=nq+r, bEng+r, q,q €2« BT AN
< (a-0)=(nq +¥) - (ngz+y) =nq - ng =n(q - g2)
< (a-b)=n(q - ¢)
< nla-b.
H4%, EME = HE#ZE—E equivalence relation & EE & B &K,
0.8 Let d=gecd (a,b). If a=da’ and b = db’, show that ged (a’,0") = 1.
#7e. HNGEE,
Supposeged (a’,b") =k > 1 (8)
= kld, K|V
= alqula bleC]% Q1aQ2EZ
= a=da =dkq;, b= =
= dk|aand
ﬁlfﬁ
= dk|ged(a,b)=d
= dk|d
= dk <d, contrary to (§]).
EENH—ERR R
a b
d =1. 9
+ (ged (a,0)" ged (a, b)) )
KAl AR E B
a|be= a | b e
ged (a,0) ' ged(a,b)
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B AL S Exercise 0.19 & (9)), FIRAGE]

al|bc= | c.

a

ged (a,b)
EREZRBRMEREE cyclic group FIRHMES B E,

0.9 Let n be a fixed positive integer greater than 1. If @ mod n =a’ and b mod n =¥/,

prove that (a+b) mod n = (a’+b") mod n and (ab) mod n = (a’b’) mod n. (This
exercise is referred to in Chapter 6, 8, 10, and 15.)

7.
a modn=a’, b modn="¥
L ) 0l 0-)
= a-a =nq, b=V =nq, q,pcZ
= a=da +nq, b=
= a+b=(ad"+nq)+(____ )
=@ +b)+(ngr+__ )= +V)+n(g+__)
= (a+b)-(a'+b)=n(g1+__ )
= n|(a+b)-(a +0")
= (a+b)=(a"+0b") (modn)

(a-b)=(a’ V) (mod n) WEEMN FHE,
FIFE BRI R, REZ B Exercise 0.3 B A BRI EE,

0.10 Let a and b be positive integers and let d = ged (a,b) and m = lcm(a, b). If ¢ divides
both a and b, prove that t divides d. If s is a multiple of both a and b, prove that
s is a multiple of m.

7. NIPEIREE, RPEA TRk,
B ZRE —ME Lemma: If ¢ |a and t | b, then ¢ | as +bu for any s,ucZ. BE L, 58
EEHEEANET,

Ift|aand t|b
= a=tq, b=___ |, q1,2€Z
= as=t(q15), bu=t(gu), ¢,q,suvel
= as+bu=t(qs)+t(qu) =1( )
= t|as+bu. (10)
KEFEH
ged (a,b) =d
B
= ds,u € Z such that as + bu = d. (11)
Ift|aandt|b
(10 (1)
= tlas+bu = d.

D



FER—HREETRVER, BERY T, EALRSARREARARBHIRE, IEExRE

0.11 Let n and a be positive integers and let d = ged (a,n). Show that the equation ax
(mod n) =1 has a solution if and only if d = 1.

7. B—EEERE Un) WEREMMAKR? U(n) BREIFFITE Elmentary Number
Theory FHEH] Z,

Proof. We need a lemma:

ged (a,b) =1 < 3s,t € Z such that as+ bt = 1.

(<) It follows immediately from p.4, thm.0.2.

(=) If there exists s,t € Z such that as + bt = 1, then since ged (a,b) | a and
ged (a,b) | b, we have ged (a,b) | (as + bt) = 1. Which implies that ged (a,b) = 1.

ged (a,n) =1

Lemma,

g

ds,t € Z, such that as+nt =1
as—1=n(-t)

n|(as-1)

as=1 (mod n)

ax =1 (mod n) has a solution

a has a multiplicative inverse modulo n

aeU(n)

R

L 0.11 Solve the congruence equation 69z =1 (mod 31).
#7e. B Exercise 0.4HJ$27R,

69-9+31-(-20)=1
= 69-9-1=31-20
= 31]/69-9-1
= 69-9=1 (mod 31) (12)
FIA(12) K Exercise 0.98I%ER, # 692 =1 (mod 31) ZAHRFEMN 9, HBE

9:69x=9-1 (mod 31)
(x2)
g l-z=2=9 (mod31)
i EBRMERE R —L group FHYITTER inverse K& A E,

0.13 Suppose that m and n are relatively prime and r is any integer. Show that there
are integers x and y such that mx +ny =r.
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7. EERE W), BWAREE, A ENGE, EURICRELRBERNE, THZ
FE7Ro

IREBHARZTE ring 2, MMEHHMRA ring WHERE, EFAEHER B SEMLE,
e Consider the set S ={ms+nt|s,teZ}.
e Consider the subset S* ={aeS|a>0} of S.

e Prove that S* + @.

e Apply the Well-Ordering Principle on S*, there is a smallest positive integer
din S*.

e Suppose that d = mp + nq.

e If ¢|m and c¢|n, by (L0)), ¢ | mp +ng = d.

e That is, d = ged (m,n).

o If gcd(m,n) = 1, then there exist p,q € Z such that mp + ng = 1. Thus,
r=m(pr)+n(qr). Let xz = pr and y = qr.

0.16 Determine 71 mod 6 and 6'°°! mod 7.
7. HEE 7=1 (mod 6) and 6 = -1 (mod 7), F|AExercise 0.9 R, FI40
61901 = (-1)11 = 1=6 (mod 7).
0.17 Let a,b, s, and ¢ be integers. If a (mod st) = b (mod st), show that a (mod s) = b

(mod s) and a (mod t) =b (mod t). What condition on s and ¢ is needed to make
the converse true?

0.18 Determine 8402 mod 5.
7. FEH 82=-1 (mod 5), FAEIERFR. Bl

8102 = (82)201 = 64201 = (_1)201 = ... (mod 5).
0.19 Show that ged (a,bc) = 1 if and only if ged (a,b) = 1 and ged (a,c¢) = 1.

Proof. ged (a,c) divides ged (a, be) is obviously. We show that ged (a,be) divides
ged (a,c). Since ged (a,b) = 1, by p.4, thm.0.2, there exists s,t € Z such that
as+bt=1.

Let d=ged (a,be)

= d|aandd]|be

d|[a(es) + (be)t] = (as+bt)c=c
d | ged (a,c).

Y

Y

L 0.19 If ged (a,b) =1 and a | be, then a | c.



0.22

0.23
0.27

0.30

0.31

0.33

0.37

ffiFe. Since a | be, suppose that

bc=aq, qeZ. (13)

Since ged (a,b) =1
(4)
= ds,t € Z such that as + bt =1

multiplying ¢

X _ +(bt)e=c
= _ +(bo)t=c
= asc+ (aq)t =c
= a( )=c¢
= alc.

Express (-7 -3i)7! in standard form.
R |
I (=7+3i)
~7-3i  (=7-3i)(-7+3i)
Express 22 in standard form.
For every positive integer n, prove that a set with exactly n elements has exactly

2" subsets (counting the empty set and the entire set).

. EREPHFIEAHE,

(Generalized Euclid’s Lemma) If p is a prime and p divides ajas---a,, prove that p
divides a; for some 1.

Use the Generalized Euclid’s Lemma (see Exercise 0.30) to establish the uniqueness
portion of the Fundamental Theorem of Arithmetic.

2. Use mathematical induction on n.

Prove that the First Principle of Mathematical Induction isa consequence of the
Well Ordering Principle.

In the cut “As” from Songs in the Key of Life. Stevie Wonder mentions the equation
8 x 8 x 8 = 4. Find all integers n for which this statement is true, modulo n.

#Fe. HERRK n 5 8x8x8=4 (mod n).

B Stevie Wonder, FBERMNHE L #—BE (KA gENFBakfth, (EA/F—EBEMAY T Just
Called To Say I Love You. (http://goo.gl/ADsXte) fiiA] LIE 2 E B IET,
(B... [EZSRFETEEEN Stevie Wonder,) AEIEFERBER EHRBE—
%55 “Who's driving this car, Stevie Wonder?” Stevie Wonder & AR ERT

SEH, B

e You Are The Sunshine Of My Life. http://goo.gl/BbrnIl

8
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0.39

0.50

0.58

Part Time Lover. http://goo.gl/YiLfRe
Sir Duke. http://goo.gl/ZxyFeG
Superstition. http://goo.gl/W12uEp

Master Blaster (Jammin’). http://goo.gl/tmlxFp.
Uptight (Everything’s Alright). http://goo.gl/TxRU5p

If it is 2: 00 A.M. now, what time will it be 3736 hours from now?

7. mod 24

The 10-digit International Standard Book Number (ISBN-10) ajasazasasagaragagarg
has the property (ay, as, ..., a1p)-(10,9,8,7,6,5,4,3,2,1) mod 11 = 0. The digit a9
is the check digit. When a,q is required to be 10 to make the dot product 0, the
character X is used as the check digit. Suppose that an ISBN-10 has a smudged
entry where the question mark appears in the number 0-7167-2841-9. Determine
the missing digit.

#R. (a1,a0,...,a10) - (10,9,8,7,6,5,4,3,2,1) RNEWER, e

10-a1+9-a9+8-ag+---+2-a9+1-ag.

EERE mod BY—ECEIER, SEMRF L& ERTEH,

ERARBER Hardy 7E 1940 B “—MBRROBEEH, 2 EEn % 1 E R
HRIE, thEEEN IS REGRERRE TREEN,

FEfRE RN AR, RTREEEM 62 = 9 (mod 11), (R LUERTEFRITREL 2, B
EEIRLL2, 58 Exercise 0.11/RELEIE T,

Let S be the set of real numbers. If a,b € S, define a ~ b if a —b is an integer. Show
that ~ is an equivalence relation on S. Describe the equivalence classes of S.

Proof. For all ae S, a-a=0€Z, so a~a, or says (a,a) €~.
Ifa~b, then a—beZ and b—a=-(a—-b) € Z. Thus, b~ a.

Ifa~band b~c thena-beZ and b-ceZ and a—c = (a-b)+(b-c) € Z.
Therefore, a ~ c. ]

7. WMEEREE—EHE, FI 3.4 77, TAMEE 3.4 ~ 3.4, 44~ 34,54~ 34,
. BB EEMRES [34] = {ae R | a~ 34}, Fill 3.4 € [3.4], 4.4 € [34],
5.4¢€[3.4], .. BEAEE [3.4] BAUM—IE equivalence classo

equivalence relation ZHEMRHAS, HEMRELRRE ="K Z, HEERERT, R
RIFITER coset RABIHHERFEE G H BT, #ERITAHE equvalence relation #Y
AT LR ERINFRRE TG, TEEE—FBAT RS EEH.
ERIBGERS AR, IRAFBREER AT D RE BERINFRRECHEE, T EH—
REATANBERN, BB EHETHERERE EFZENHA,

TR relation, BIHERE TR, BERANE-ERE BE. £6. HE,
ERATEZESS BT REANRA, ZIRIREMEREME T, (BIREXEEN
EAREARE, RREERPE JFENELREEGITE.,

9
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SeiE— T direct product, FESEE A R B Y direct product e —E#HHIES, &€
E Ax B, EAEGKER AR B 2RIBOTREHRERNEFE (ordered pair), fiE
R

Ax B {(a,b)|aeAbeB).
BER, BB UHE—EESE S BEEBEHCDM direct product, fREAFTER R2 = RxR =
{(z,y) | z,y e R} BLE2—{EMEFIFIF,

REAR— T BN RN R 1%, B
13<25, V2<2, z<1, 21410, 7m42,...

HAERMERAMR. BERVRES RELERE <,

“COREREER—HEES, ER—ME R xR BFEE (subset), i5M@ subset “<’BE&T T
HE TR

(13,25), (V2,2), (2,1),...

HE A
(21,10), (7,2),....
g 5
<={(13,25),(v/2,2), (1)} ERxR.
B2

(21,10), (7,2) ¢< .
RHRIE, FrMREEERESEU—-ERATIENES, ERATUHEEGKERE.
BATRIERE R ERZ relation,

) def.
a relation “~” on a set S € a subset ~ of SxS.

EEAERMRT, FILEEWR (a,b) e~v, TFIEECE o ~ b, FrLARIRIET (13,25) e<, 2
TIBLECIE 13 < 25, BERME ZMUINE? HEWMRIRBREE[E relation AE, REE
HE RS HERRGREEERE,

BT relation, HMEEZFE equivalence relation,

a relation ~ on a set S is called an equivalence relation
if and only if the following statements hold:
(i) Vs e S, (s,s) e~.
(ii) If (s,t) e~ , then (t,s) e~ .
(iii) If (s,t) e~ and (t,u) e~ , then (s,u) e~ .

Bt AT LARE PR

(i) Vse S, s~ s.
(ii) If s ~ ¢, then ¢ ~ s.

(iii) If s ~t and t ~ u, then s ~ u.

B equivalence relation FIEARBHE M EEE —1F relation@ 2 equivalence rela-
tion, f&&% S = {a,b,c,d}, F@fE T HEI—1E relation on S /& equivalence relation?

10



0.59

0.60

0.63

0.65

e ~1={(a,0),(b,¢),(¢,d), (a,c), (b,d), (a,d)}

e ~={(a,0),(b,c),(a,c)}

e ~3={(a,0),(b,0),(a;¢),(a,a),(b,0),(c,c)}

e ~i={(a,0),(b,¢), (a,¢),(a,a),(b,0), (¢ c), (d,d)}

e ~5={(a,b),(b,c), (a,¢),(a,a),(b,0), (¢ c), (d,d), (b,a),(c,b),(c,a)}

35— the relation < on R N @&—fEequivalence relations

35— T the relation = on Z —{flequivalence relation, 3&{# equivalence relation
LHEE, ZfREGLERNBIERERE,

equivalence relation R partition 8 ZEVIERAY, EZRMMEER —4E,
IRIERZFEAE, equivalence relation B4 _FELE—ME5RLRIMESE, FIA013 R IARKZENHE
E1, E.[IEI%T mod 4 Z T, EFfIELEMEEFRN, HElZ 13=9 (mod 4).

MRIRRBEIEERN BERNENEERE R, MEAEE LRIEE, 7R DUIREIRSANT
./J\F’EEI'J%%Z?&, HEMZ AR Z<xZ T3] Z "8, st x:Z=xZ - Z, Bl
x(3,7) =21,

Let S be the set of integers. If a,b € S, define aRb if ab > 0. Is R an equivalence
relation on S7

7.

Let S be the set of integers. If a,b € S, define aRb if a + b is even. Prove that R is

an equivalence relation and determine the equivalence classes of S.
What is the last digit of 31907 What is the last digit of 21007

7. —EHF o WEMHEERZE « mod 10, EESFHERT (7) BEEMET
RERET ...

(Cancellation Property) Suppose a, 3, and v are functions. If ay = S and 7 is
one-to-one and onto, prove that o = 3.

Proof.

11



1 Chapter 1

1.1 With pictures and words, describe each symmetry in D3 (the set of symmetries of
an equilateral triangle).

1.2 Write out a complete Cayley table for Ds. Is D3 Abelian?

f7e. IREEM, abelianfE Cayley table LAN{AIZRIA?
EEEMIR—MEET dihedral group D,, B Cayley Table BJiF /51, H

D, ={1,a,a? ...,a" ', b,ba,ba?,...,ba" " | |a| = n,|b| = 2,ab = ba"'}.
TEE L Dy B, EEEFES LM D, &R/,

o M8 1,a,a%,b,ba,ba?® KINESR, KRIEE b,
o EEHE—T
o KEFASEIP S HINED, REEERZ R, BE—FINAEL IE TR,
o BE SN B ELSHIE—FIREREELS, LS ERFELRE— F4
BIRFAEERE %,
T EFTR,

Dy |1 a a?>|b ba ba?
1 |1 a_ a® | b ba ba?

o | e>/9

=zl

1 a a®> | b ba ba?
1 1 a a®* | b ba ba?
a a a®> 1 |ba® b ba
a? | a® 1 a | ba ba® b
b b ba ba?| 1 a a®
ba | ba ba®> b | a? 1 a
ba? | ba®? b ba | a a®* 1

1.3 In Dy, find all elements X such that

a. X3=V;
b. X?’:Rgo;
c. X3 = Ry;
d. X3=R0;
e. X3=H.

1.4 Describe in pictures or words the elements of D5 (symmetries of a regular pentagon).

12



1.5 For n > 3, describe the elements of D,. (Hint: You will need to consider two
cases—n even and n odd.) How many elements does D,, have?

7.

1.6 In D, explain geometrically why a reflection followed by a reflection must be a
rotation.

R, BIE n 2R IEEZIER MK 1E5E, B2 rotation Bi/E reflection Al ZETH
BEAERRRONE, B0

\120" Qi

AT A S

B
\ 90°
1 2 4 1 2 1
4 3 3 2 3 4

1.7 In D, explain geometrically why a rotation followed by a rotation must be a rota-
tion.

7.

1.8 In D,,, explain geometrically why a rotation and a reflection taken together in either
order must be a reflection.

fa7e.

1.10 If 1,79, and r3 represent rotations from D,, and fi, fo, and f3 represent reflections
from D,,, determine whether 79 fi73 f2 f3r3 is a rotation or a reflection.

1.11 Find elements A, B, and C' in Dy such that AB = BC but A # C. (Thus, “cross
cancellation” is not valid.)

1.12 Explain what the following diagram proves about the group D,,.
fa7e.

13



1.13

1.14

1.15
1.17

1.19

1.20

SR

2.1

2.2

Describe the symmetries of a nonsquare rectangle. Construct the corresponding
Cayley table.

Describe the symmetries of a parallelogram that is neither a rectangle nor a rhom-
bus. Describe the symmetries of a rhombus that is not a rectangle.

Describe the symmetries of a noncircular ellipse. Do the same for a hyperbola.

For each of the snowflakes in the figure, find the symmetry group and locate the
axes of reflective symmetry (disregard imperfections).

7. FRSIENRIMA LR T, FllEELEERRERE, (FMREEEMIEE,

o {RAJLAZ%E 8% https: //www.youtube.com/watch?v=fd-hb2xzvZI,

o B LERAGIRIBRIETEEM, http://goo.gl/uRFJIba, MEKAEE, 700 TN L,
http://goo.gl/CjZGqz,

o GERWEENEE, MRAMEEEREIEENES, EEMIEEHE, http://
goo.gl/h7pw3, B EIE L EER MRS AT DI Bl 28 T .

Does a fan blade have a cyclic symmetry group or a dihedral symmetry group?

fa7e.

Bottle caps that are pried off typically have 22 ridges around the rim. Find the
symmetry group of such a cap.

7.
2 Chapter 2
Gallian Burton Theorem
exe.0.13 p.21, thm.2.3 | ged (a,b) = d = 3s,t such that as+ bt = d
p.23, thm.2.4 | ged (a,b) = 1 < 3s,t such that as + bt =1
exe.0.6 p.23, cor.2 ged (a,b) =1,ale,b|c=ab|c
p.24, thm.2.5 | ged (a,b) =1,a|bc=a|c
p.79, cor.2 la|=n,a*=e=n|s
exe.3.4 lz| = |z
p80, thm.4.2 |CLT| = m

Which of the following binary operations are closed?
(a) subtraction of positive integers
(b) division of nonzero integers

(¢) function composition of polynomials with real coefficients

(d) multiplication of 2 x 2 matrices with integer entries

Which of the following binary operations are associative?

14
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2.3

2.4

2.5

2.6

2.8
2.9

2.10

2.12

2.15

(a) multiplication mod n
(b) division of nonzero rationals
(¢) function composition of polynomials with real coefficients

(d) multiplication of 2 x 2 matrices with integer entries
Which of the following binary operations are commutative?

(
(

a) subtraction of integers
b) division of nonzero real numbers
(c) function composition of polynomials with real coefficients

(d) multiplication of 2 x 2 matrices with integer entries
Which of the following sets are closed under the given operation?

(a) {0,4,8,12} addition mod 16

(b) {0,4,8,12} addition mod 15

(¢) {1,4,7,13} multiplication mod 15
(d) {1,4,5,7} multiplication mod 9

In each case, find the inverse of the element under the given operation.

13 in U(14)

In each case, perform the indicated operation.
(a) In C*, (7+5i)(-3 +21)

(b) Tn GL(2, Z1y), det lz ‘51]

(¢) In GL(2,R), lg ‘;]

(d) In GL(2,Z3), [2 3]

Referring to Example 13, verify the assertion that subtraction is not associative.

Show that {1,2,3} under multiplication modulo 4 is not a group but that {1,2,3,4}
under multiplication modulo 5 is a group.

Show that the group GL(2,R) of Example 9 is non-Abelian by exhibiting a pair of
matrices A and B in GL(2,R) such that AB # BA.

Given an example of group elements a and b with the property that a='ba # b.

Let G be a group and let H = {z~! | x € G}. Show that G = H as sets.

15



2.20

2.22

2.23

2.24

For any integer n > 2, show that there are at least two elements in U(n) that satisfy
x?=1.

. EEHA U EEERY, ZE, EURBERMBEIMEROEATER: B

FUHARAIGIT, REERT BRI BRI/, IV0RE HMFIH U3) ~U(9), &
BICIE 22 = 1 RTCREER, (REHE T HEEHEE?

U(3) = {®>®}

U(4) = {®7@}

U(5) = {®72>37@}
| ®THECHE

U®) = {1,5)

U = {1,2,3,4,5,6}

U®) = {1,3,5,7)
U©9) = {1,2,4,5,7,8}

IRBEH T ERRENS?
Proof. Whenn>2 n-1+1eU(n) and 12=(n-1)?=1. |
fi7e. B Exercise 3.59B T ERI1R?

Let GG be a group with the property that for any x,y, z in the group, zy = zx implies
y = z. Prove that G is Abelian. (“Left-right cancellation” implies commutativity.)

Proof.
ab, =ba. < b (ab,) = (ba.)b,

(Law of Exponents for Abelian Groups) Let a and b be elements of an Abelian group
and let n be any integer. Show that (ab)™ = a™b™. Is this also true for non-Abelian
groups?

(Socks-Shoes Property) Draw an analogy between the statement (ab)~! = b=1a~! and
the act of putting on and taking off your socks and shoes. Find distinct nonidentity
elements a and b from a non-Abelian group such that (ab)~! = ¢ 'b~!. Find an
example that shows that in a group, it is possible to have (ab)=2 # b=2a"2. What
would be an appropriate name for the group property (abc)=! =c¢tbta=1?

7. REE—TEMNE (sw)™ = w s~ M Socks-Shoes Property,
o ik s RRBHT w XRRFEHT-
o H sw FRAFHTHFET, (HEE, RME sw REEAEIE, REE—K.)

o Hil (sw) ! RAREZREME, LAY,
o MIHRFERELMET ! HHEET !, HHtE w s
o FTLL (sw) t=wls,

16



2.25

2.27

2.30

2.31

Prove that a group G is Abelian if and only if (ab)~' = a~1b! for all a and b in G.

Proof. (=) For any a,be G,

abelian

(ab) ™t =btat £ ol

(<) For any a,be G,

hypothesis

ab = (a—l)—l(b—l)—l 1 (a—lb—l)—l _ (b—l)—l(a—1)_1 - ba

[
For any elements a and b from a group and any integer n, prove that (a~'ba)" =
a tb"a.
7. EHERMLINTE linear algebra W, FEHEMEE AR ERRELER T, fla] A =
P-1DP A0 = p-1 D100 p,
Proof. 1f n =0, then
(a™'ba)’ =e=a"'a=aea! =ab’a "
If n >0, then
(a'ba)" = (a b)) (& Tba)- (& Tba) = a 'V a.
n t;nes
If n <0, then
(a7'ba)"” = ((a‘ba)™)™
— (aflbfla)fn
= (a7'07) (@b ) (b a)
-n times
— a—l(b—l)—na
= a'ba.
[
Give an example of a group with 105 elements. Give two examples of groups with

44 elements.

fi7e. Consider cyclic groups and dihedral groups.

Prove that every group table is a Latin square; that is, each element of the group
appears exactly once in each row and each column.

. EEES T —EEEENFL, B2 group table E—1T, 1AIFEZEE group
HITCEN —EEFHE, SEIRMFE Section 5B & HHMlz fw. EEBRE|IEHT —HEE
HJEH: Cayley Theorem.

17



2.34 Prove that if (ab)? = a?b? in a group G, then ab = ba.

Proof.
(ab)? = a®V?
= abab = aabb
left multiplying a1
= bab = abb
right multiplying p~1
= ba = ab.

2.36 Let a and b belong to a group GG. Find an z in G such that zabx! = ba.

2.37 Let G be a finite group. Show that the number of elements x of G such that 3 = e
is odd. Show that the number of elements = of G such that 22 # e is even.

Proof. Note that

T #e, P=e=>r’tes

Let S ={xeG|a®=¢e}. Pickx;y #e€S. Then z; # 27" and 27! € S. Remove
these two elements z; and x7! from S. Pick x5 from the remaining elements, do
the same process as above. We can always remove two elements because z;! #
x;l e Sif ¢ # 5. Since G is finite, we can’t do the process infinitely. Finally,
there is only one element remain in S. That is, the identity element e. Thus,
S={e,xy, 27t 20,25, ,,, 2y, 2, } and #S is odd.

Note that

2rteox+al

Let S={zeG|2?+e}. Pickax; #e€S. Then z; # 27! and 27 € S (why?). Remove
these two elements z; and 27! from S. Pick x5 from the remaining elements, do the
same process as above. We can always remove two elements because z;! # x]fl €S
if ¢ # j. Since G is finite, we can’t do the process infinitely. Finally, there is no
element remain in S. Thus, S = {z1, 27}, 9,23, ,,,, 20, 2} and #S is even. [ |

,,,,,

f7e. c.f. Exercise 3.59.

2.38 Given an example of a group with elements a, b, ¢,d and = such that axb = cxd but
ab # cd. (Hence “middle cancellation” is not valid in groups.)

2.39 Suppose that G is a group with the property that for every choice of elements in G,
axb = cxd implies ab = c¢d. Prove that G is Abelian. (“Middle cancellation” implies
commutativity.)

fiFe. loab=baO1

2.40 Find an element X in D, such that RoyVXH = D'.
7. B, BRE-RRAIT B L ERN T,

18



241

2.42

2.43

2.44

2.45

2.46

Suppose F; and F, are distinct reflections in a dihedral group D,,. Prove that
FiF5 # Ry.

#i7e. Since F? = Ff = Ry and by Theorem 2.3, Fy' = Fy # Fy' = Fy. If F1F = Ry,
then Fy = FL.

Suppose F} and F; are distinct reflections in a dihedral group D,, such that F} F}, =
FQFl. Prove that F1F2 = ngo.

#78. See Section 1 Exercise 6 (p.37). Note that

(F\Fy)? = () (FLF) = FI(FyF) Fy = FI (FLEY) Fy = FEFS = Ry,

Let R be any fixed rotation and F' any fixed reflection in a dihedral group. Prove
that RFFRF = F.

#7¢8. It is sufficient to show that Rseosm ' Rseoyn = F'. Note that R = RY!

360/ for some
m.

Let R be any fixed rotation and F' any fixed reflection in a dihedral group. Prove
that FRFF = R™*. Why does this imply that D,, is non-Abelian?

f78. It immediately follows by Exercise 2.43.

In the dihedral group D, let R = R34/, and let F' be any reflection. Write each of
the following products in the form R' or R'F', where 0 <i < n.

a. In Dy, FR2FR>

b. In D5, R3FR*FR™?

c. In Dg, FROFR2F

f@7e.

Prove that the set of all rational numbers of the form 36", where m and n are
integers, is a group under multiplication.

1B, ECfE group test BYEER: BARSE R,

Proof. Let S'={3m6"€Q |m,neZ}. We show that S is a group under multiplica-
tion.

e Closed: For any 3™16™,3m26"2 € S, where my,mg,ny,ng € Z, since my +
Mo, N1 + No € Z, we have

3m1 6TL1 . 3m26n2 — 3m1+m26n1+n2 = S
e Associative: For any 3m16"1, 3m26"2 3m36"3 € S| where my, ma, ms3, ny, Mo, N3 €
Z,
(3m1 6711 . 3m2 6712) . 3m3 6713 — 3m1 +mo 6n1+n2 . 3m3 671,3

_ 3(m1 +ma)+ms3 6(n1 +ng)+ns3
_ 3m1+(m2+m3)6n1+(n2+n3)

— 377’7,1 6711 . 3m2+m3 6n2+n3

— 3m1 6n1 . (3m26n2 . 3m56n3)

19



2.47*

2.49

2.50

e Identity: Since 0 € Z, we have 1 = 3°6° € S and 1 is the multiplicative identity
in S.

e Inverse: For any 3™6" ¢ S, where m,n € Z, since —m,—n € Z, we have
36 ¢ S and 3m6" - 376" = 1 € S. That is, 3m6" has a multiplicative
inverse in S.

7. HEMALURE S c Q- {0}, Asubgroup test Bi#f, i1 Al LA E —{f associa-

tives

Prove that if GG is a group with the property that the square of every element is the
identity, then G is abelian.

Proof. For any a,b € G, since a? = b? = e, we have

a=a'andb=0b". (14)

e = (ab)? = abab

left multiplying a1

{ _

= a™! = bab
left multiplying p~1

{ -1 -

= bla™t =ab

(14)

= ba = ab

Prove the assertion made in Example 20 that the set {1,2,...,n—1} is a group under
multiplication modulo n if and only if n is prime.

fwFe. ERMZIFRT,

ged(a,n) =1<axr=1 (mod n) has a solution <> a has an inverse in Z,.

ged (a,n) =1
dx,y € Z, such that ax +ny =1

8

)

l=ax+ny=axeU(n)

8

a has an inverse in Z,,.

In a finite group, show that the number of nonidentity elements that satisfy the
equation z° = e is a multiple of 5. If the stipulation that the group be finite is
omitted, what can you say about the number of nonidentity elements that satisfy
the equation x° = e?

#87E. Note that if z is a solutaion of the equation z° = e, then xo, 3, 23, g, 2} all

are and x} # ) for any i # j € {1,2,3,4,5}.
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2.52

2.53

2.54

7T 2.A

3.1

3.4

3.5

Let G={[a4]|aeR, a+0}. Show that G is a group under matrix multiplication.
Explain why each element of G has an inverse even though the matrices have 0
determinants. (Compare with Example 10.)

Suppose that in the definition of a group G, the condition that there exists an
element e with the property ae = ea = a for all a in G is replaced by ae = a for all
a in G. Show that ea = a for all @ in G. (Thus, a one-sided identity is a two-sided
identity.)

Suppose that in the definition of a group G, the condition that for each element a
in G there exists an element b in G with the property ab = ba = e is replaced by
the condition ab = e. Show that ba = e. (Thus, a one-sided inverse is a two-sided
inverse.)

Let GG be a set with an operation * such that:

1. GG is closed under x*.

2. * is associative.

3. There exists an element e € G such that e x x =z for all x € G.

4. Given x € (G, there exists a y € GG such that y * x = e.

Prove that G is a group. (Thus you must show that x * e =2 and x *y = e for e,y
as above.) (Abstract Algebra, Herstein, Section 2.2, Exercise 28)

7. ERELL FEREE T, FTLMRA DI B group axiom FIRYFLERRARZERT, 1
SR i DU R E 2. SER ILBERREE , B BT,

3 Chapter 3

For each group in the following list, find the order of the group and the order of
each element in the group. What relation do you see between the orders of the
elements of a group and the order of the group?

Zis, U(10), U(12), U(20), D,

fi7e. C.f. p.148, Corollary 2.

Prove that in any group, an element and its inverse have the same order.

IBR. zh=eox " =¢.

Proof. Note that 2" = e < (z71)" =27 = (2")~! = e. If |2| < |27, since zl*l = ¢,
then (z71)ll = e, a contradiction. ]

7. MERER, EERR 2| - o)), EEEEREE, EBNKE, MR [ > 2, BE 2
B ol SRR, S5 REAYEF B E Exercise 2.20, 2.37, 3.5, 3.50

Without actually computing the orders, explain why the two elements in each of
the following pairs of elements from Z3, must have the same order: {2,28}, {8,22}.
Do the same for the following pairs of elements from U(15): {2,8}, {7,13}.
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3.6 In the group Zis, find |al, |b], and |a + | for each case.

a. a=6,b=2
b.a=3,b=8
c.a=5>b=4

Do you see any relationship between |al, |b], and |a + b|?

3.8 What can you say about a subgroup of D3 that contains Royy and a reflection F'?
What can you say about a subgroup of D3 that contains two reflections?

3.9 What can you say about a subgroup of D, that contains Rs79 and a reflection?
What can you say about a subgroup of D, that contains H and D? What can you
say about a subgroup of D, that contains H and V7

3.10 How many subgroups of order 4 does D, have?

R, WR—1@E group G B order & 4, BEMLERH—E order /& 4 B element AT
&R, B0 Zy; B2 3 i order 2 BTGE K —1E order 1 BJJTR (identity) FERL, H
EM{E order £ 2 FITTHAETE (BAEM) EERE =M order £ 2 KITTR, B Zy © Zoo

3.11 Determine all elements of finite order in R*, the group of nonzero real numbers
under multiplication.

Proof. +1. [ ]

3.12 If a and b are group elements and ab # ba, prove that aba # e.

left right

W, aba=e=ba £ a! £ ab

3.13 Suppose that H is a nonempty subset of a group G that is closed under the group
operation and has the property that if @ is not in H then a=' is not in H. Is H a
subgroup?

3.14 Let G be the group of polynomials under addition with coefficients from Zy. Find
the orders of f(x) = T25+5x+4, g(x) = 422+82+6, and f(x)+g(x) = x2+3z. If h(z) =
n n-1_... 3 3 _
X"+ 12" 1+ +ag belongs to G, determine |h(x)| given that ged (aq, as, ..., a,) =
1; ged (ag, as, ..., ay,) = 2; ged (ag, as, ..., a,) = 5; and ged (aq, as, ..., a,) = 10.

Proof.
[f(x)] = 10,
lg(x)] = 5,
[f(z) +g(x)] = 10.

5 if ged(aq,as,...,a,) =2,
|h(z)| =1 2 if ged(ay,aq,...,a,) =5,
1 if ged(aq,as,...,a,) = 10.
|

3.15 If a is an element of a group G and |a| = 7, show that a is the cube of some element
of G.
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3.16

3.17

3.18*

3.19

3.20

3.21
3.23

3.24

3.25

3.26

3.27

f#7e. " = 1,03 = a, consider in (a). |a| =7,b=a",a" =1,(a")"=a™ =1 = a™*! =
a=3[(Tr+1)=r=2

Suppose that H is a nonempty subset of a group G with the property that if a and
b belongs to H then a='b~! belongs to H. Prove or disprove that this is enough to
guarantee that H is a subgroup of G.

Prove that if an Abelian group has more than three elements of order 2, then it
has at least 7 elements of order 2. Find an example that shows this is not true for
non-Abelian groups.

Suppose that a is a group element and a® = e. What are the possibilities for |a|?
Provide reasons for your answer.

#&7. Division Algorithm.
Proof. By division algorithm,
6=la|-qg+r forsome q,re€Z, where 0<7r<]al
If » #0, then 0 < r <|a| and
e=a’=alm = (glha.q" =",
a contradiction. Thus, r = 0 and |a| divide 6. That is, |a| € {1,2,3,6}. n
If a is a group element and a has infinite order, prove that a™ # a™ when m # n.

Let z belong to a group. If 22 # e and 2% = e, prove that 2 # ¢ and 2° # e. What
can we say about the order of x?

Proof. 1t immediately follows by Problem 3] || =3 or 6. [ |

Show that if a is an element of a group G, then |a| < |G].
Show that U(20) # (k) for any k in U(20). [Hence, U(20) is not cyclic.]

Suppose n is an even positive integer and H is a subgroup of Z,,. Prove that either
every member of H is even or exactly half of the members of H are even.

#F.2¢H2¢H

Prove that for every subgroup of D,,, either every member of the subgroup is a
rotation or exactly half of the members are rotations.

Prove that a group with two elements of order 2 that commute must have a subgroup
of order 4.

For every even integer n, show that D, has a subgroup of order 4.

®7. {1,020, ba"2).
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3.28

3.29

3.30

3.31

Suppose that H is a proper subgroup of Z under addition and H contains 18, 30,
and 40. Determine H.

Proof. (ged (18,30,40)) = (2). |

Suppose that H is a proper subgroup of Z under addition and that H contains
12,30, and 54. What are the possibilities for H?

t7e. MPERBPE span

Prove that the dihedral group of order 6 does not have a subgroup of order 4.

f878. There is no element in D3 which is of order 4. Hence if there is a subgroup
H of D3 which is of order 4, then H must be a Klein four group. The elements in
D3 which is of order 2 are b, ba,ba?. But {1,b,ba,ba?} is not a subgroup of Ds.

C.f. p.148, Corollary 2.
7. 5 Lagrange’s Theorem, i it EfIE T,

For each divisor & > 1 of n, let Uy(n) = {x € U(n) | x mod k = 1}. [For ex-
ample, Us(21) = {1,4,10,13,16,19} and U,(21) = {1,8}.] List the elements of
U4(20),U5(29),Us5(30), and Uyp(30). Prove that Ug(n) is a subgroup of U(n). Let
H ={xe¢U(10) | z mod 3 = 1}. Is H a subgroup of U(10)? (This exercise is
referred to in Chapter 8.)

Proof.

U,4(20) {1,9,13,17},
Us(20) {1,11},
Us(30) = {1,11},
Up(30) = {1,11}.

We show that Ug(n) is a subgoup of U(n).

e Closed:
a,beU(n)
= a=1 (modk), b=1 (mod k)
= ab=1-1=1 (mod k)
= abe Uk(n)
e Identity:

1 modk=1= 1U(n) € Uk(n)

e Inverse*:

k|n

aeUp(n)cU(n) = Jat eU(n) = ged (a™,n) =1 X ged (a7t k) =1 = a ! e Up(n).

H is not a subgroup of U(10) because H = {1,7} and 7-7=49=9¢ H. n
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3.32 If H and K are subgroups of G, show that H n K is a subgroup of G. (Can you
see that the same proof shows that the intersection of any number of subgroup of
G, finite or infinite, is again a subgroup of G7)

12, EC1E subgroup test BYOER: AR

Proof.
e Closed:
H,K<G
r2yeHNK=>x,ye Hz,ye K 5N rye Hrye K =>2xye Hn K.
e Identity:
HK<G=egeHeqe K=eqe HNnK.
e Inverse:

H

reHNK=xeHzeK

G

rteHaos'le K=a2sleHnK.

K<
)
=
| ]

3.33 Show that Z(G) = Ngee Cz(a). [This means the intersection of all subgroups of the
form Cg(a).]

Proof.

9¢€2(G)
< ga=agforallaeG

< G €Ngeq Cg(a).

3.34 Let G be a group, and let a € G. Prove that C'(a) = C(a™!).

Proof.

beCgq(a)

ba = ab

a'(ba) =a ' (ab)
a'(ba) =b
a'(ba)a™ = ba™"
a'b=ba™

be Og(a_l).

R

g_1 eC(a)

#7E. If ge C(a), then ga~' = (ag))' £ (g'a)'=a'gand geC(a)

25



3.36 Complete the partial Cayley group table given below.

— 00 ~J O Ot Ot
~J 00 Tt OO O
Ot Oy 00 |3
S Ot = 0| 0o

CO 1 O U = W DN | =
—_

~J 00 UL O W = NN
S UL J 00 — N = Ww
QU O 0O NN~ Wk

O 1O U i W+

7. 6=5-2,5-6=5-5-2.

3.37 Suppose G is the group defined by the following Cayley table.

O 1 O O = W N +—

CO 1 O U i W N -
~J 00 Ut OO W = — NI
Sy = I N Ot oo W W
TR W 00— O =1 | i
= W N — 00 =1 O O Ot
Wk = N~ 00 Ut YD
DD O CO W O = i |7
= O = = Ot DN W 0o oo

a. Find the centralizer of each member of G.

b. Find Z(G).

c. Find the order of each element of G. How are these orders arithmetically related
to the order of the group?

7. C(a), Z(G) £ Cayley Table LHIfAIZRIA?

3.38 If a and b are distinct group elements, prove that either a? # b? or a3 # b3.
7. EEHEM—ERE AREREY, BIrEEH
A= (Bor(O)

Aand (~B)=C.

a+b,a®=b*=a’+ b

3.40 In the group Z, find
a. (8,14);
b. (8,13);
c. (6,15);
d. (m,n);
e. (12,18,45);
In each part, find an integer k such that the subgroup is (k).
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3.41 For each a in a group G, the centralizer of a is a subgroup of G.
Proof. Since ea = a = ae, we get e € Ci(a).
If b,ce Cg(a), then

ceC(a) ceCg(a)

(bc)a=b(ca) % blac)=(ba)e = (ab)c=a(be).

Hecnce, be € Cg(a).
If be Cs(a), then

ab = ba
right multiplying b1
= (ab)b™! = (ba)b™!
= ae=a=bab™!
left multiplying p~1
= bla=ab™?
= ble Cg(a).

3.42 If H is a subgroup of G, then by the centralizer C(H) of H we mean the set
{x € G| xh=hz for all he H}. Prove that C'(H) is a subgroup of G.

Proof.
e Closed:
x,ye C(H)
yeCl(H) zeCi(H)
= VheH, (zy)h=2(yh) = x(hy)=(zh)y = (hz)y="h(zy)
= xyeC(H).
e Identity:

Vhe Hegh=h=heg=eqceC(H).

e Inverse*:

H<G,VheH,h leH zeC(H)

reC(H) X e h= () (k) ' =ha Tt = 27t e C(H).
m

3.43 Must the centralizer of an element of a group be Abelian?
3.44 Must the center of a group be Abelian?

3.45 Let G be an abelian group with identity e and let n be some fixed integer. Prove
that the set of all elements of G that satisfy the equation z" = e is a subgroup of
G. Give an example of a group GG in which the set of all elements of GG that satisty
the equation z2 = e does not form a subgroup of G.
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3.46

3.47

3.48

3.49

3.50*

Proof. Let S={xeG|a"=e}. We claim that S is a subgroup of G.
e Closed:

G abelian
abeS=>a"=e=b"= (ab)" % a"b"=cc=e=abes.

e Identity:
en=€e=>eg€S.

e Inverse*:
aeS=(a)"=(a")'=el=e=a'es.

In the case G = D3 = {{a,b) | |a| = 3,[b] = 2,ab = ba"'}, S ={x e G| 2% =c¢} =
{e,b,ba,ba?}. S is not a subgroup of G because b-ba=a ¢ S. [

Suppose a belongs to a group and |a| = 5. Prove that C(a) = C(a®). Find an
element a from some group such that |a| = 6 and C'(a) # C(a?).

f78. See p.67, Example 14.

Let G be the set of all polynomials with coefficients from the set {0,1,2,3}. We
can make G a group under addition by adding the polynomials in the usual way,
except that we use modulo 4 to combine the coefficients. With this group operation,
determine the orders of the elements of G. Determine a necessary and sufficient
condition for an element of G to have order 2.

In each case, find elements a and b from a group such that |a| = |b] = 2.
a. lab|=3 b. |abl=4 c. |abl=5

Suppose a group contains elements a and b such that |a| = 4, |b| = 2, and a3b = ba.
Find |abl.

Suppose a and b are group elements such that |a| =2, b # e, and aba = b?>. Determine
|b].

Proof. We show that b? + e.

If 2 =¢
= aba = b*=e
left multiplying a
= aaba = a
right multiplying a
= aabaa = aa
aa=e
= b= e, a contradiction.
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L0, ORI

o= (0
= (aba)(aba)
ab(aa)ba

ab’a

= a(aba)a

= (aa)b(aa)
Loy

Therefore, b* = b and b3 = e and |b] = 3.

NS .
ROER R
aba = b?
left multiplying a
= aaba = ab?
right multiplying a
= aabaa = ab*a
aa=e
= b = ab’a
aal:e
= b? = (ab*a)? = (ab’a)(ab’a) = ab*(aa)b?a = ab'a
= aba = b? = ab*a
left multiplying a
= aaba = aab*a
right multiplying a
= aabaa = aab*aa
aal:e
= b =0

Therefore, b* = b and b3 = e and |b] = 3.

3.51 Let a be a group element of order n, and suppose that d is a positive divisor of n.
Prove that |a¢| = n/d.

. BEIFERY p.80, thm 420985 1f [a] = n, then |o7| = ', EREHAIH

A, NHER 7| no EAMRMEE, BB/ NTMEARERS, TR, RIRFEZEE
AT

T RBEBE AN A SRR FEEAR %, EEE r R n 25EE —EE E—EE

T
r T.
7= gatt(r.n)

3.52 Consider the elements A = [ (1) _01 ] and B = [ _01 _11 ] from SL(2,R). Find

|A|,|B|, and |AB|. Does your answer surprise you?
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3.53

3.54

3.56

3.57
3.58

Proof. |A| =4, |B| =3, |AB| = c. n

Consider the element A = l (1] 1

] in SL(2,R). What is the order of A? If we view

A= [ (1) 1 ] as a member of SL(2,Z,) (p is a prime), what is the order of A?
Proof.
1] = oo if Ae SL(2,R),
| p it AeSL(2,Z,y).
[ |
For any positive integer n and any angle #, show that in the group SL(2,R),
cosf —sind|" _|cosnf —sinnd
sinf cosf | |sinnf cosnfd |’

Use this formula to find the order of

cos60° —sin60° and Ccos \/§O —sin \/§O
sin60°  cos60° . sin \/§O cos \/§O '
(Geometricall, [z?r?z _CZISHHQ] represents a rotation of the plane 6 degree.)

Let = belong to a group and |z| = 6. Find |22|,|23|, |z4|, and |2®|. Let y belong to
a group and |y| = 9. Find |yi| for i = 2,3,...,8. Do these examples suggest and
relationship between the order of the power of an element and the order of the
element?

wre. FEL ®ME

@' = —=
ged (n,7)

EEEEN, AEBNF 2R LKEREE.
D, has seven cyclic subgroups. List them.
U(15) has six cyclic subgroups. List them.
Proof.

(1) = {1},

(2) = {1,2,4,8},

(4) = {14},

(1) = {1,7,7°=4,7 =13},

(11) = {111},

(14) = {1,14}.
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3.59%

3.60

Prove that a group of even order must have an element of order 2.

Proof. Consider the set S = {x € G| 2% = e}. Since |z| = [z7Y, if |z| > 3, then x and
7! are two distinct elements that they have the same order. Thus, there are even
number of elements in G\S and the number of elements in S are even. Since e € S,
there is an element x, € S such that zy # e and z3 = e.

HHOIERI#EYE: Define a relation “~” on the group G of even order by
a~b<a=bora=>b".

Then show that “~” is an equivalence relation. In addition, show that the number
of elements in each equivalence class is either 1 or 2 and the equivalence class which
contains the identity is {e}.

HAM idea(KFEHH): Let G = {g1,92,...,9n} be a group, where n is an even number.
Let Perm G be the set of all permutation on the set G. Show that the mapping
0:G - G defined by 0(g) = g7! is a permutation. That is, o € Perm G.

Define a mapping 0 : Perm G - S,,.

If 7€ Perm G and  7(¢;) = g5,
then 6(1)(7) = .

Show that 6 is well-define and 6(o) is a product of disjoint tranpositions.

If g1 = e, then 6(0)(1) = 1. Since n is even and 6(o) is a product of disjoint
tranpositions, there must exists j # 1 such that 6(¢)(j) = j. That is, 0(g;) = g; and

g;' = g; and |g;| = 2. m

Proof. Note that

:Ir2¢e<:>x¢x‘1.

Let S ={zeG|a?#e}. Pick 1 # eeS. Then 21 # 27! and 27! € S (whyT).
Remove these two elements x; and 27! from S. Pick x5 from the remaining elements,
do the same process as above. We can always remove two elements because x;! #
x]‘.l e S if ¢ # j. Since G is finite, we can’t do the process infinitely. Finally, there

is no element remain in S. Thus, S = {z1, 27", 22, 25", ,,,,Tn, 2, } and #S is even.
Since |G| is even, we get #(G - S) is even and there exists g # e € G- .S and |g| = 2.
|

o EHEIR 2 20 B HERIR?
o Z1REE| group action GHIEEEHE Cauchy’s Theorem FJ—{ERH5,

Suppose G is a group that has exactly eight elements of order 3. How many sub-
groups of order 3 does G have?

U] BB AT DU |2 = 2.
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Proof. Suppose that a; is an element of order 3 in G. Then |a?| = 3 and a? # a;. By
a similar argument, {ay,a?, as, a3, as, a3, a4, a2} are all the eight elements of order 3.
There are 4 subgroups of order 3. They are

Hl = {€7a17a‘%}7

H2 = {6,@27613},
H3 - {67a3)a§}7
H, = {e,ay,a3}.

3.61 Let H be a subgroup of a finite group G. Suppose that g belongs to G and n is the
smallest positive integer such that ¢g" € H. Prove that n divides |g|.

fi7e. By Division Algorithm, suppose that |g| = n- ¢ + r for some integer ¢ and
O<r<n. Ifr#0, then e = gldl = gva+7 = (g7)7- ¢g" and ¢" = (¢)~? € H. Contrary to
the minimality of n. Therefore, r = 0 and n divides |g|.

3.62 Compute the orders of the following groups.
a. U(3),U(4),U(12)
b. U(5),U(7),U(35)
c. U(4),U(5),U(20)
d. U(3),U(5),U(15)
On the basis of your answers, make a conjecture about the relationship among

U(r)],[U(s)], and [U(rs)|.
e, EEARERR, EE iy, ZEHNEEAZ—LER TR,

3.63 Let R* be the group of nonzero real numbers under multiplication and let H = {x €
R* | 22 is rational}. Prove that H is a subgroup of R*. Can the exponent of 2 be
replaced by any positive integer and still have H be a subgroup?

3.64 Compute |U(4)|,|U(10)], and |U(40)|. Do these groups provide a counterexample
to your answer to Exercise 627 If so, revise your conjecture.

3.65 Find a cyclic subgroup of order 4 in U(40).
3.66 Find a noncyclic subgroup of order 4 in U(40).
7. {1,9,11,19).

3.70 Let G be a group of functions from R to R*, where the operation of G is multipli-
cation of functions. Let H = {f € G| f(2) = 1}. Prove that H is a subgroup of G.
Can 2 be replaced by any real number?

Proof.
e Closed:

x,yeH

zye H= (zy)(2) =2(2)-y(2) £ 1-1=1=azyeH.
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e Identity:
10(2) =1= 1Gf€H.

e Inverse:
z(2)>0

zeH=z"2) %t [2(2)]'=1"=1=>2"'€cH.

3.71 Let G=GL(2,R) and H = {[g 2:| | a and b are nonzero integers ; under the oper-

ation of matrix multiplication. Prove or disprove that H is a subgroup of GL(2,R).

Proof.
e Closed:
a 0] [¢c O
[0 617[0 d]GH = a,b,c,d all are not 0
= ac#0,bd+0
a 0] |c O ac 0
[o b]'lo d]:lo bd]EH'
e Identity:
1+0 L0y H
= 0 1 =eqg € .
e Inverse:

-1
a 0 a 0 al 0
[O b]eHza;ﬁO,biOz[O b] =l0 b‘1]€H'

3.73 Let H={a+bi|a,beR,a?+b>=1}. Prove or disprove that H is a subgroup of C*
under multiplication. Describe the elements of H geometrically.

Proof.

e Closed:

a>+b*=1=c*+d*

(a®> +0*)(*+d?) =a*P + b+ +bPd?*=1-1=1
(ac—bd)? + (bc+ad)* =1
(a+bi)(c+di)=(ac—bd)+ (bc+ad)ie H.

a+bi,c+die H

byl

e Identity:
1=1+04, 1°+0%°=1=>1¢H.
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M 3.73

3.74

3.77

3.78

3.79

e Inverse:

a+bieH = a>+b*=1

() ()
a? + b2 a? +02)

N1 G -b
= (a+b) _a2+b2+a2+b2€H'

The geometric interpretation of H is the unit circle in the complex plane. ]

Let H={a+0bi|a,beR,a?+b>=1}. Prove or disprove that H is a subgroup of C*
under multiplication. Describe the elements of H geometrically.

Proof. Since 1=1+0i and 12+02=1, we get 1€ H.

If a+bi,c+die H, then a?>+b?>=1=c?+d? and
(a®> +b*) (P +d?) = a* + VP + a*d> + b*d* =1-1=1.
Therefore, (ac—bd)? + (bc + ad)? =1 and
(a+bi)(c+di)=(ac—bd)+ (bc+ad)ie H.
u

Let G be a finite Abelian group and let a and b belong to G. Prove that the set
(a,b) = {a’b? | i,j € Z} is a subgroup of G. What can you say about |[(a,b)| in terms
of |a| and |b]?

Let a belong to a group and |a| = m. If n is relatively prime to m, show that a can
be written as the nth power of some element in the group.

?ﬁ;ﬁ a=al = agcd(m,n) = qMTtNY = (am)w + (ay)n — (ay)n.

Compare to Section 4, Exercise 73.

Let F' be a reflection in the dihedral group D,, and R a rotation in D,,. Determine
C(F) when n is odd. Determine C'(F') when n is even. Determine C'(R).

Let G = GL(2,R).

)

s rwac(] 1)

c. Find Z(G).

Proof. Let
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Ce(B) - {Z‘ "leare. R)|l“ Z] [(1) é]:l(l’ éH‘CL Zl,ad—bci()}
]
= . d eGL(2,R|b=c,a=d,ad-bc+0
B (0 b 2 12
= {_b a‘eGL(Q,RHa b iO}
Let

By a similar argument,

Co(A) = {[Z alib]eGL(Q,RHaQ—ab—bQ;tO}

Therefore,
Z(G) ¢ Cg(A)nCq(B)
{[ ]eGL(2,R)|a2¢0}
It is easy to show that S € Z(G). Hence, Z(G) = |

fli7Fe. See Exercise 33. Z(G) c C(a) nC(b).

3.80 Let GG be a finite group with more than one element. Show that G has an element
of prime order.

-1 7o rn

#78. Show that |a| < co. Suppose |a| = pi* - piz---pir. Then consider P’ P2* 7",

fi7E 3.A Let G={2€C| 2" =1 for some n € Z*}.

(a)

Prove that G is a group under multiplication (called the group of roots of unity
in C).

Proof. For any 21,29 € G, suppose that 27" = z;? = 1 for some ny,n9 € Z*. Then
(z122)Mm2 = (27")"2(25%)™ =1-1=1. That is, 2122 € G. Obviously, 1! =1 so
1 € G. In addition, (%)m = =7 = 1. Thus, 21‘1 € G. The associative of the
multiplication on G inherited from the multiplication on C. Therefore, G is a
group under multiplcation. [ |

Prove that GG is not a gorup under addition.

Proof. Note that 1€ G but 1+1 =2 is not in GG because 2" # 1 for any n € Z*.
Hence, G is not closed under addition. [

35



4.4

4.5

4.9

4.10

4.11

4.13

4 Chapter 4

List the elements of the subgroups (3) and (15) in Z15. Let a be a group element
of order 18. List the elements of the subgroups (a?) and (a'®).

Proof. By Exercise 4.11,

List the elements of the subgroups (3) and (7) in U(20).
Proof. (3)=(7)={1,3,9,7}. u
How many subgroups does Zgy have? List a generator for each of these subgroups.

Suppose that G = (a) and |a| = 20. How many subgroups does G have? List a
generator for each of these subgroups.

Proof.
Lo {a)
(2) / \ (5) (a?) / \<a5>
<4)/ \<10)/ (a*) / \WO)/
\<0) / \(a0 = 1)/
.
Let G = (a) and let [a] = 24. List all generators for the subgroup of order 8.

Proof. By the formula of the order of the element in a finite cyclic group, we

know that |a™| = ﬁ. It is sufficient to find m such that ged (m,24) = 3.
Then |(a™)| = m = 8. By some computation, m € {3,9,15,21}. That is, the
generators for the subgroup of order 8 are a3, a?, a'® and a?'. [ |
Let G be a group and let a € G. Prove that (a!) = (a).

In Zsyy4 find a generator for (21) n (10). Suppose that |a| = 24. Find a generator for
(a?') n (a'?). In general, what is a generator for the subgroup (a™) n (a™)?

Proof. IREARAIUERSE (21) IR (10), (HEERBUR—LETT,

36



4.14

4.16

4.19

Exercise 4.11
o (21)=(-3) £ (3)={0,3,6,9,12,15,18,21}.
p.80, thm.4.2

e Since [(10)| = |10 L m = 12, by the Fundamental Theorem of

Cyclic Groups, there is only one subgroup of order 12. Thus,
(10) = (2) ={0,2,4,6,8,10,12, 14,16, 18,20, 22}.
e Then (21) n (10) = (3) n(2) = (6).

Similarly,
(') n(a'®) = (a’) n (a®) = (a°).

In general, (a™) n (a™) = (a"), where r = L.c.m.(ged (m, 24), ged (n, 24)). |
. BEER.

Suppose that a cyclic group G has exactly three subgroups: G itself, {e}, and a
subgroup of order 7. What is |G|? What can you say if 7 is replaced with p where
p is a prime?

&R, Fundamental Theorem of Cyclic Groups.

Proof. By the Fundamental Theorem of Cyclic Groups, G = Z,g. Z49 has exactly
three subgroup: Zyg,(7) and {0}. |G| =49. If 7 is replaced with a prime p, then
G= Zp2. |

Proof. 5EREAIREFGERIARIGE, BEAE—L2REGRVER.

e At first, we need to prove that |G| is finite. See Hungerford, p.37, exe.l.4.8.

Recall that the Fundamental Theorem of Cyclic Groups states that: If G is
a cyclic group of finite order, then the order of every subgroup of G divides

|G| and for each divisor k of |G|, there is only one subgroup H of G such that
|H| = k.

e If G has exactly three subgroups G, H and {0}, where |H| = 7, then by the
Fundamental Theorem of Cyclic Groups, |G| = 49.

If G is cyclic and |G| = 49, then G 2 Zyg.
If 7 is replaced with a prime p, then G = Z,2.

Find a collection of distinct subgroups (aq), (as), ..., (a,) of Zsso with the property
that (a1) c (az) c -+~ c (a,) with n as large as possible.

Proof. (0) c (120) c (60) c (30) c (15) c (5) c (1). |

List the cyclic subgroups of U(30).
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Proof.

(1) = {1},

(1) = {1,7,19,13},
17y = {1,17,19,23},
(11) = {1,11},

(19) = {1,19},

(29) = {1,29}.

4.21 Let G be a cyclic group with |G| = 24, and let a € G. If a® # e and a'? # e, show
that (a) = G. (Hint: consider |a| and |G]|.)

Proof. By the Lagrangle’s Theorem, |a| divide |G| = 24. Recall that if |a| divide n,

then a™ = e. Equivalently, if a” # e, then |a| + n. Hence, a® # e and a'? # e implies

that |a| ¢ {1,2,3,4,6,8,12}. Therefore, |a] = 24 and G is a cyclic group generated

by a. That is, G = (a). u
4.24 For any element a in any group G, prove that (a) is a subgroup of Cg(a).

Proof. (a) is already a subgroup of G. It is sufficient to show that (a) ¢ Cg(a). If
a™ € (a), then a™-a =a™"! =qa-a™. That is, a™ € Cg(a). u

4.26 Find all generators of Z. Let a be a group element that has infinite order. Find all
generators of (a).

Proof. +1, a*'. [ |

4.27 Prove that C*, the group of nonzero complex numbers under multiplication, has a
cyclic subgroup of order n for every positive integer n.

. EEERER o = 1
p h _ o 2mi 2m | ;i 27
roof. (wy), where w, =en"' = cos < +isin <. [

4.28 Let a be a group element that has infinite order. Prove that (a’) = (a’) if and only
if G = 2.

Proof. (<) By Exercise 4.11.
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4.30%

4.31

(a) = (a’)

= a'e{d)
= a' = (a?)® for some ¢, € Z
= ai_qu =e

|al=co
=  i=Jju=0

= i=Jq

Similar 7 =g, for some ¢y € Z

= 1= =g

=  i(qgp-1)=0

If 1=0

= 7=0=—5

It Q1g2—-1=0

= q1q2 =1
= q = =1
= 1=%J

Suppose a and b belong to a group, a has odd order, and aba=! = b-!. Show that
b? = e.

. aba ! =b1=bab=a. Let x =ba =ab!. Then 22 =-- = a2.
Suppose |a| =2n + 1. Then x?n*l = ... = .

Therefore, b? = 442 = ...

Proof. aba™' =b~! implies that ba = ab™!. Let x = ba = ab™!. Then z2 = (ab™')(ba) =
a’.

Suppose that |a| = 2n + 1. Then

:E2n+l = - (:EZ)n = 7. (a2)n — (ba) X (a2)n — b_a2n+1 =p.
Therefore, b2 = (227+1)2 = (2)2n+1 = (2)2n+1 = (g20+1)2 = ¢, -

Let G be a finite group. Show that there exists a fixed positive integer n such that
a" = e for all a in G. (Note that n is independent of a.)
iR, Consider (a) = {a,a? a?,...}.

f78. 2358 Lagrange’s Theorem Z %%, :EfE G2 SERE,

Proof. Let G ={ay,as,...,as}. Since G is finite, for i = 1,2, ..., s, (a;) = {a;,a?, a3, ...}

is finite. Hence, a’i = a¥ for some j; > k; and a%~* =e. Let n =lcm.(j; — k1,2 —
kz,...,js—ks). |
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4.33 Determine the subgroup lattice for Z,2,, where p and ¢ are distinct primes.

#Em. List some concrete examples. Then you will discover something.

Proof.

/\
/ \ /
\ /

4.35 Determine the subgroup lattice for Z,», where p is a prime and n is some positive
integer.

Proof.

4.36* Prove that a finite group is the union of proper subgroups if and only if the group
is not cyclic.

fE7x. Fundamental Theorem of Cyclic Groups.

Proof. (=) Suppose that G = (a) is a cyclic group and which is the union of its
proper subgroups. If H is a proper subgroup of G, then a ¢ H. Therefore,

a¢ |J H=G,

HeG
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4.40

4.41

4.49

a contradiction.

(<) Let G = {ay,as,...,a,} be a finite group which is not cyclic. Then there does
not exist an element a € G such that (a) = G. That is, (a;) is a proper subgroup for
every i = 1,2, ...,n. Therefore,

G = Ula)

i=1

G is the union of its proper subgroups. [
Let m and n be elements of the group Z. Find a generator for the group (m)n(n).
Proof. (l.c.m.(m,n)). u
Suppose that a and b are group elements that commute and have order m and n.

If (a)n(b) = {e}, prove that the group contains an element whose order is the least
common multiple of m and n. (Hint: the idea of the proof is similar to the one we
prove the order of two disjoint cycles.)

Proof. We show that ab is an element whose order is l.c.m.(m,n). Note that

If (ab)" =€
ab commute
e= (ab)” Loogny
€ (a)n(b) = {e}
a"=b"=e
a"=b=e
= |a| divide r and n = |b| divide r

r is a common multiple of m and n

L 2

the least common multiple of m and n is the order of ab.

wFe. WHREAE (a) n(b) = {e} BEMBRAFEEABIL, BIAT a = 2,0 =4 € Z)y, ERH
JRHIEERR

For each positive integer n, prove that C*, the group of nonzero complex numbers
under multiplication, has exactly ¢(n) element of order n.

. 1 BATE n RGBS, BRER R4 Bk n RREIZ] 1897 B0 1 69 4 {H 4
KRG 1, -1,4,—i o, (-1) £ 2 XAGWRESREREEE 1 7, 6 B - “5F#E8
%’ 4 R&EF 1.

p.80, thm.4.2

Proof. Let w, = e’ =cos 2% +isin 25 Then |wk| £ seatmy- Thus,

|k =n < ged(n, k) =1

and

#H{WF e (w,) |ged (n, k) =1} = #{1 <k <n|ged (n, k) =1} = ¢(n).
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7. B —TEER p.8l, corde BE L, Z,, = (w,).

4.51 Suppose that G is a finite group with the property that every nonidentity element
has prime order (for example, D3 and D). If Z(G) is not trivial, prove that every
nonidentity element of G' has the same order.

Proof.
Lemma: If ab = ba and (a) n (b) = {e}, then |ab| =1.c.m.(|al, |b]).

Proof of Lemma:

If (ab)" =¢
ab=ba
= e=(ab) £ 'V
= a" =b"e(a)n(b)={e}
= ad=b"=e
= a=b=e
p.79, cor.2

EX la| divide r and |b| divide r
= ris a common multiple of |a| and |b|
= the least common multiple of |a| and |b] is the order of ab.

Proof of the Problem: Suppose that e #+ c € Z(G). For any e # g € G, we show
that |g| = |c|.

If |g| = p # ¢ = || for some primes p and ¢
= ged (lgl,[ef) =1

Exercise 4.64

= (c)n{g) = {e}

Lemma and ceZ(G)
= legl = Lem.(|c], lg]) = pa.
But |gc| is also a prime, a contradiction.

FRAHIERE: Suppose that e # ¢ € Z(G) and |¢| = p for some prime p. Pick a fixed
g # e € G, suppose that |g| = ¢ for some prime gq.

Since c € Z(Q)

= cg = gc

= (cg)??=(")!(g?)" =e
p.79, cor.2

= lcg| divide pq

cg=e or |cg| is a prime

= legl €{1,p,q}

If |cg| =1, then cg =e and g = ¢! and ¢ = |g| = |c!] =|c| = p.

If [cg| = p, then e = (cg)? = PgP = g and ¢ = |g| divide p. Which implies that ¢ = p.
If |cg| = g, then e = (cg)? = ¢g? = ¢? and p = |c| divide ¢. Which implies that
q=Dp. u
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4.53

4.64

4.66

4.68

#7e. R, WA ab = ba + e = |ab| = lem(|al, [b]), BILTE Doy H, [a®] = 8 = |,

a?-a’=a%-ad e, HRZ |a®-a° = [a'?| = 2 # Le.m.(|a?], |a?)).

Let p be a prime. If a group has more than p—1 elements of order p, why can’t the
group be cyclic?

Proof. Let G be a such group. If GG is infinite, then G is Z. But Z has no element
with finite order except the identity. So let’s assume that G is finite and cyclic. Let
a € G and |a| = p. Then for any e # b € (a), by p.81, cor.1, |b| divides p and |b| = p.
Hence, (a) contains p—1 elements of order p. By the hypothesis, there exists ¢ ¢ (a)
such that |c| = p. Then (c) is another subgroup of G with order p. But by the
Fundamental Theorem of Cyclic Groups, G' can have only one subgroup of order p,
we have a contradiction. Thus, G can’t be cyclic. [ |

Let a and b belong to a group. If |a| and |b] are relatively prime, show that (a)n(b) =

{e}.

Proof.
ce{a)n(b)

= c=a®="b'
= dl = (a®)lal = (aldhys = ¢
= e =clal = (bt)\al = ptlal

p.79, cor.2
EX Ib] divide #q]

ged (Jal,|b)=1,(77)

2 |b| divide ¢

Suppose  t =|b|-q for some q€Z
= c=b=M)=e

= (a) N (b) = {e}.
S8 If x € (a) n (b), then x = a® = b*. By p.80, thm.4.2,

|al 0]
|:L‘| = = .
ged (lal,s)  ged (0], 1)

Which is a divisor of |a| and |b|. But |a| and |b] are relatively prime, the only possible
is |x| = 1. That is, x = e. [

78, B5% Lagrange’s Theorem, & B &2 1SE .,
Prove that U(2") (n > 3) is not cyclic.

#27R. Use induction on n to prove that if ged (a,27) = 1, then a2 = 1 (mod 27),
where n > 3. Therefore, for any a € U(2"), by p.79, cor.2, |a| divides 272 and
la] # 271 = ¢(27). That is, U(2") can’t be generated by any element.

Prove that Z,, has an even number of generators if n > 2. What does this tell you
about ¢(n)?
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Proof. 1f x is a generator of Z,, by Exercise 4.11, then Z, = (x) = (-z). In Z,,
1=-1if and only if n € {1,2}. Thus, if n > 2, then = # -z € Z,. Therefore, there
are even number of generators of Z,, if n > 2.

In addition, by p.81, cor.4,

the number of generator of Z, = #{1 <k <n|ged(k,n) =1} =|U(n)| = ¢(n).

##7E. IR Exercise 3.59 th#— T,

IRt R UERE SR B B IS, Wt 2 e ¢(n) is even when n > 2, REFE Z,
has an even number of generators if n > 2,

Suppose that n = pi'py*---ps*, where py, po, ..., ps are distinct primes.

e Case I: there exists p; is odd.
1 1 1
(-2 0-2)-0-)
P1 P2 Ps
(pl—l) (pz—l) (ps_l)
n e e
D1 P2 Ps

n

¢(n)

——(p1—1)(p2—1)--+(ps — 1) is even because p; — 1 is even
P1p2-Ps

e Case IL: n=2". Since n>2, we have r > 1 and ¢(n) = 2" (1-1) =271 is even.

E25¢ Lagrange’s Theorem Z &, FJLMREIE M ¢(n) is even when n > 2

4.70 Suppose that |z| = n. Find a necessary and sufficient condition on r and s such that
(x7) c (x°).

Proof.

—

") € (%)
"= (2*)? for some q € Z

T84 — o

¢ 0
808

p.79, cor.2
n|(r-sq)
r=sq (modn)

¢ ¢ 8-

sg=r (modn)
Exercise 0.11

< ged (s,n) | r.

4.73* Let p be a prime. Show that in a cyclic group of order p” — 1, every element is a
pth power (that is , every element can be written in the form a? for some a).
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Proof. BRARIERE:

Suppose G = (a),|G|=p" -1
ged (p,p"-1)=1 p.80, thm.4.2
pr-1
= [ R
ng (p’pn - 1)
= G = (aP)
= VgeG,g=(a")®=(a®)".
HiE—
Suppose G =(a),|G|=p" -1
= a’"t=e
= " =a
= G={(a)=(a")
= VgeG,g=(a?" ) =a" = (as”n_l)p.
HE_

Suppose G ={(a),|G|=p" -1
Consider f:G -G, f(g9)=¢"
If f(a®) = f(a")

= a’®? = a'?
ap(s_t) =€

p.79,icor42

= lal = (p" = 1) | p(s - 1)

gcd(pnflip)ﬂy(??)

= (r"=1) | (s-1)

— asft -

= a’® = a

= f is one-to-one
Gl={G<eo

= f is onto

= Vg€ G,3h e G such that h? = f(h) =g

. MO FRZR] g BIRBMARE AR peE 8 E@EM, EEEHEIEE p ~
B BRHENREL, BB EEEE R pEEH S G 2R ERIFAEHEEERN
Bk, =RE R finite field #HE— Frobenius automorphism, 2% 15.44,

4.78 If n is odd, prove that D, has no subgroup of order 4.
Proof. Recall that there are only two kind of group of order 4, one is (x) = {1, z, 22,23},

|z| = 4. For example, Z,. Another one is {1,z,y,2}, xy = z,yz = x,xz = y and
|z| = ly| = |z| = 2. For example, Zs ® Zy. These two kind of group both are abelian.
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4.79

4.80

4.81

14.63, 4.83*

Suppose that D,, = {1,a,a?,...,a"',b,ba,ba?,...,ba"'}, where |a| = n, |b| = 2 and
ab = ba=1.

If z € (a), by p.81, cor.1, |z| divides |(a)| = |a| = n. Since n is odd, we get |z| # 4. If
x = ba', then || = 2 # 4. There are no element with order 4 and D,, has no cyclic
subgroup of order 4.

If z € (a), by p.81, cor.1, |z| divides [(a)| = |a] = n. Since n is odd, we get |z| # 2.
Thus, there are no element in (a) with order 2. If D,, has a subgroup which is of
the form {1,z,y, z}, where zy = z, |x| = |y| = |z| = 2, then it must be x = ba’, y = ba’
for some n—1<i>j<0 and ba’7 = zy = yr = ba’~*. Which implies that a’~7 = a/~*
and (a7)? = e and |a?J| = 2, a contradiction because a’J € (a). u

f78. £5E Lagrange’s Theorem 2%, ;2 HCH GB 5 H GE,
If n >4 and is even, show that D,, has exactly n/2 noncyclic subgroups of order 4.
Proof. (a™?,b), {a™? ba),{a™? ba?),...,{a™?, ba™?"1). [

If n > 4 and n is divisible by 2 but not by 4, prove that D,, has exactly n/2 subgroups
of order 4.

PTOOf. <an/2’ b)a (an/2’ ba)? <an/2, bCL2), ) (an/Q, ba”/2‘1>. |
How many subgroups of order n does D,, have?

Proof.
(a)}, n is odd;

{
{H<D,||H|=n}= { {{a),(a?,b),(a? ba)}, n is even.

Let a and b belong to some group. Suppose that |a| = m and |b] = n and m and n
are relatively prime. If a* = b* for some integer k, prove that mn divides k.

#&m. Division Algorithm.

Proof. By Exercise 4.64, a* = V% € (a) n(b) = {e}. Then |a| =m | k and |b| = n | k.
Since ged (m,n) =1, we have mn | k.

T OB R
ged (r,s)=1,r|st=r|t
e=(a™)k = (a*)m =) =" = n | km X n|k
ged (rys)=1,r|st=r|t
and e= (b= () = (a) =a* > m|kn =  ml|k
ged (r,s)=1,r|t,s|t=rs|t
= mn | k.
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Lagrange’s Theorem
=

ged (m,n)=1

A

Y

ged (r,s)=1,r|t,s|t=rs|t

=

(a) n(b) < (a) and (a) n (b) < (b)
[(a) N (b)| divide |{a)| = |a| =m and [(b)| = |b| =n

[{a) n(b)] =1

(a) 0 (b) = {e}

a® =b"e(a)n(b) = {e}
k _ bk —e

laj=m |k and |b]=n |k

n
N

mn | k.

4.84 For every integer n greater that 2, prove that the group U(n? - 1) is not cyclic.

3. Note that ged (21,n%2-1) = ged (2n,n%2 - 1) = 1 because (xn)?2 - (n?2-1) = 1.
S ={1,-1,n,-n} form a noncyclic group of U(n?-1). (S 2Zy®Zy.) So U(n?-1)
can’t be a cyclic group because any subgroup of a cyclic group must be a cyclic as

well.

4.85 Prove that for any prime p and positive integer n, ¢(pm) = p* — p*~1L.

Proof.
o(p")
5 Chapter 5
5.1 Let

12345 6 1 2
a_[213546]and6_l61

1

#{ae{1,2,....p"} | ged (a,p™) = 1}
#{ae{1,2,....p"} | ged (a,p) = 1}
#lae{l,2,....p"} |p+a}
p"—#{ae{l,2,....,p"} | p divides a}
p”—#{lp,zp&p#_lp,ép,m,zﬁ-p}

n n—1

p -p

3 4 6
2 4 51

5
3

Compute each of the following.

(a) a7t

(b) Ba
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(c) ap
5.2 Let

Q
I
| e—
o —
w N
~ W
GLINTN
— ot
- o
o 3
o
[—

and

—_
co W
o
S Ot
ot O
[NOREN |
= 00

W N

Write «, 3, and af as

(a) products of disjoint cycles,

Proof.

a = (12345)(678),
B = (23847)(56).

(b) products of 2-cycles.

Proof.

(15)(14)(13)(12)(68)(67),
(23)(38)(84) (47) (56).

e
Il

=
I

ML 5.2 Let

© w
SR
- >
oo
o0 ~
— oo
b ©

Q

Il
[ e—
>~
w N

and ]

sy
Il
| —|
W =
1N N}
oo W
DN W~
S Ot
Nelie))
~
—
[$2 SNe]

Write «, 3, and af as

(a) products of disjoint cycles and determine the order of «, 8 and «f.

Proof.
a = (14578)(239),
po= (138)(24)(569),
af = (197843)(256).
| = 15,
|/B| = 67
] = 6.
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(b) products of 2-cycles (transpositions), and determine «, 8 and af are even or

odd.
Proof.
a = (18)(17)(15)(14)(29)(23), even permutation,
g = (13)(38)(24)(56)(69), odd permutation,
af = (13)(14)(18)(17)(19)(26)(25), odd permutation.

5.3 Write each of the following permutations as a product of disjoint cycles.

(a) (1235)(413)
(b) (13256)(23)(46512)
(c) (12)(13)(23)(142)

5.5 What is the order of each of the following permutations?

124)(357)
b) (124)(3567)

(a)

(b)

(c) (124)(35)
)
)

~ A~~~

(d) (124)(357869)
(e) (1235)(24567)
(f) (345)(245)

5.9 What are the possible orders for the elements of Sg and Ag? What about A;?

&, If two permutations have the same cycle structure, then they have the same
order.

(1234)(56)|
|(123)(45)]
(123)(456)|
(12)(34)] =
(12)(34)(56)|

Proof. 1f two permutations have the same cycle structure, then they have the same

[
DA U
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order. Note that the elements in Sg has the following type.

(123456),
(12345),
(1234),
(123),

(12),
(1234)(56),
(123)(45),
(123)(456),
(12)(34),
(12)(34)(56),

The order of the elements in each type is

(123456)| =
(12345)| =
(1234)] =
(123)] =

(12)] =
|(1234)(56)| =
|(123)(45)] =
(123)(456)| =
(12)(34)] =
(12)(34)(56)| =

el

— NN WO RN W OO

The possible orders for the elements of Sg are 1,2,3,4,5,6.
Note that the elements in Ag has the following type.

(12345),
(123),
(1234)(56),
(123)(456),
(12)(34),

e.
The order of the elements in each type is

(12345
(123
1(1234) (56
1(123) (456
(12)(34)] =

el =

— —r N N

I
=N W A L O

20



The possible orders for the elements of Ag are 1,2,3,4,5.
The elements in S7 has the following type.

(1234567),
(123456),
(12345),
(1234),
(123),

(12),
(12345)(67),
(1234)(567),
(1234)(56),
(123)(456),
(123)(45),
(123)(45)(67),
(12)(34)(56),
(12)(34),

e.
The elements in A; has the following type.

(1234567),
(12345),
(123),
(1234)(56),
(123)(456),
(123)(45)(67),
(12)(34),

The order of the elements in each type is

(1234567)| =
(12345)] =
(123)] =
(1234)(56)| =
(123)(456)| =
|(123)(45)(67)| =
(12)(34)] =

el =

e = RS I SR SC R S BN

The possible orders for the elements of A; are 1,2,3,4,5,6,7.
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5.13

5.19

5.23*

0.24

Suppose that « is a mapping from a set S to itself and a(a(z)) =z for all z in S.
Prove that « is one-to-one and onto.

Proof. One-to-one: a(r;) = a(xs) = ala(ry)) = ala(xz)) = xs.

Onto: For any y € S, there exists a(y) € S such that a(a(y)) =y. u

Let a and [ belong to S,,. Prove that af is even if and only if a and [ are both
even or both odd.

Proof. 1f «v is even and f is odd, then o/ is odd. [

Show that if H is a subgroup of S,, then either every member of H is an even
permutation or exactly half of the members are even.

7. Suppose that 01,09, ...,0, are all the even permutation in H. If 7y is an odd
permutation in H, show that mgoq, 7909, ..., 790, are all the odd permutation in H.

Proof. Suppose that oy, 09, ...,0, are all the even permutation in H. If 7y is an odd
permutation in H, then for any odd permutation 7 in H,

7= (101517 = 70(75'7)

and 757 is an even permutation because it is a product of two odd permutations.
That is, every odd permutation in H is of the form 7yo for some even permutation
o in H. Thus, g0y, 1909, ..., oo, are all the odd permutation in H. ]

Proof. Let G be a group of order 12. For any e # g € GG, by Lagrange’s Theorem,
lg| € {2,3,4,6,12}. If |g| = 2n for some n € Z, then [¢"| = 2. If for all e # g € G, we

have |g| = 3, then |g?| = 3 and there are 2k elements of order 3 for some k € Z, as the
following figure indicates.

(92)

Suppose that H is a subgroup of S,, of odd order. Prove that H is a subgroup of
A,.

fEm. Tricky. Consider HA,,.
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5.26

5.29

Proof.

If H¢A,
dh € H,h is an odd permutation
HA, =S,

= |S,|=|HA,| =

Y

Y

[H]- |An]
|H n A,
Sul _H]

[Anl - [H 0 A

= |H|=2-|HnA,|

= 2=

Thus, H ¢ A, implies that 2 divides |H|. Equivalently, |H| is odd implies that
HcA,. [

Let « and 3 belong to S,,. Prove that a~!f~'af is an even permutation.
#27R. Consider a mapping s: S, - U(3) = {1,2} = {1,-1} defined by

if o is even;

s(7) :{ -1, if o is odd.
Show that s(o7) = s(0)s(7) and s(o) = s(o7!) for all 0,7 € .S,,.
Proof. [73iE—] g and ¢! in S,, both are even or odd. ¢ and aga™' both are even
or odd. So a7t and (8 both are even or odd.
[7355Z] Consider a mapping s : S, = U(3) = {1,2} = {1,-1} defined by

s(0) = 1 if o is even,
] -1 ifoisodd

For any o,7 € S,,, you can prove that s(o7) = s(0)s(7) and s(o) = s(c7!) case by
case. Then whatever a and f is either even or odd, we have

s(a”'pap) = s(a™)s(B7)s(a)s(B) = s(a)?s(B)* =1

and o157 1af is an even permutation. [ ]

How many elements of order 4 does Sg have? How many elements of order 2 does
Se have?

R, 180, 75. (why?)

Proof. By Problem [5] the element of order 4 in Sg must be of the type (1234) or
(1234)(56). There are (§)4 =90 elements of type (1234) and (§)% = 90 elements
of type (1234)(56). Thus, there are 180 elements of order 4 in Sg.

By Problem [5] the element of order 2 in Sg must be of the type (12) or (12)(34)
or (12)(34)(56). There are ( ) = 15 elements of type (12) and (2)(2) =45 elements

of type (12)(34) and GG )( ) — 15 elements of type (12)(34)(56) Thus, there are 75
elements of order 2 in Sﬁ

Something good: http://goo.gl/BjYQhN ]
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5.30 Prove that (1234) is not the product of 3-cycles.

5.31*

5.32

Proof. (1234) is odd and a product of 3-cycles is even. [
Let (8 € S; and suppose 54 = (2143567). Find §.
R,

Proof. Note that (zyzowsrirsrery)? = (v1x5020630724). That is, the quartic of a
7-cycle is a rearrangement of the number in the order

1-5-2-6-3->7->4.

Since | 1
64 = ($1{E5$2I6$3l‘7$4) = (2143567),
I T

we get 3 = (x1022324052627) = (2457136).

Furthermore, since (84)7 = e, the order of § must be a divisor of 4 x 7 =22x 7. If
|5] € {1,2,22}, then §* = e # (2143567). In addition, there are no element in S;
whose order is 2 x 7 or 22 x 7, hence, the order of  must be 7. The element of order
7 in S; must be a 7-cycle. Thus, = (2457136) is the only possible answer.

T T IR

Step 1: Connect the corresponding number between 5 and 5.
ﬁ=($‘1$2$3$4$5$6$7)
g- ( Sr e )
Step 2: Ease the number.

= ( O O 0.0 O )

pr=( i O o o o )
Step 3: Fill the number into 34.

375 67 )

Step 4: The answer is clearly. [ ]

Let 5 =(1,2,3)(1,4,5) (B is not a product of disjoint cycles). Write 3% in disjoint
cycle form.
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5.33%*

Proof. Note that 8= (123)(145) = (14523) and /3° = e. Thus,

599 — 6100&—1 —_ (55)205—1 — B—l — (32541)

[
Find three elements o in Sy with the property that o3 = (157)(283)(469).
27, Observe that (123456789)3.
Proof. Observe that (123456789)3 = (147)(258)(369).
a = (124586739),
b = (724186539),
¢ = (524786139)
are three desired elements.
T TR
Step 1: Connect the corresponding number between o and o4.
o = ( x1 xo_x3 T4 Ty T T7 Xy Ty )
o3 = x‘l x4: $7% 1;:2 x5 ZBgi; g:vg :xﬁ 93‘9 )
Step 2: Ease the number.
c = ( O OO O o o oo o )
03:(imm o o o EIIZIIL)
Step 3: Fill the number into o3.
o = ( O 0O o o o oo o)
a3=(}5:7§é(22i3§)é§4“6l)
Step 4: The answer is clearly. [ ]

Proof. Note that (xixexsrir50677)* = (2120522206230724). That is, the quartic of a
7-cycle is a rearrangement of the number in the order

1-5-2-6->3->T7->4.

Since % = (x1x502x6x30724) = (2143567), we get 8 = (x1292324052627) = (2457136).

At first, you can connect the corresponding number between o and o*.
] AN/ |
54:(J1I5 2I6$3$7$4)

Then erase the number.
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5.34

5.35

5.37

5.45

5.46

5.48

5.50

Finally, fill the number in 4.

Eh (L143567)

Then the answer is obviously. [ ]
What cycle is (ajas--a, )17

Proof. (a,---asay). (]
Let G be a group of permutations on a set X. Let a € X and define stab(a) = {« €

G | a(a) = a}. We call stab(a) the stabilizer of a in G. Prove that stab(a) is a
subgroup of G.

#2R. Note that a(a) =a=a(a™(a)) and « is one-to-one.

Proof. The identity of G is the identity mapping ix defined by ix(x) = x for all
x € X. In particular, ix(a) = a. Thus, ix €stab(a).

If o, B € stab(a), then
(aB)(a) = a(B(a)) = afa) = a.
Thus, af € stab(a).

Since a(a) = a = a(a(a)) and « is one-to-one, we have a = a~!(a). That is,

a~! estab(a). |
Let a=(1,3,5,7,9)(2,4,6)(8,10). If o™ is a 5-cycle, what can you say about m?
Proof. 6| m but 5+ m. [
Prove that S,, is non-Abelian for all n > 3.

Proof. (12)(123) # (123)(12). |
Prove that A,, is non-Abelian for all n > 4.

Proof. (123)(234) # (234)(123). n
Show that in S7, the equation 2 = (1234) has no solutions but the equation x? =
(1234) has at least two.

Proof. x? is even and (1234) is odd. |
Let a be a 2-cycle and 8 be a t-cycle in S,,. Prove that af«a is a t-cycle.
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2.51

5.52

9.59

5.60

fER. Since «v is a 2-cycle, we have o = a~!. Suppose that 3 = (c¢i¢a---¢;). Then
afa =afat = (a(er)a(er)ale)).

Use the previous exercise to prove that, if o and 8 belong to S,, and £ is the product
of k cycles of lengths ny, ng, ..., ng, then afa! is the product of k cycles of lengths
Ny, N,y ..., Nk

3. Note that if C' = (¢1c9:++¢), then aCa™ = (a(c1)a(c)-a(c)), as the follow-
ing figure indicates.
a(c;) e, C;

I

a(Cis1) +—— i1

Suppose that § = C1Cy--Cy = (c11¢12-+C1ny ) (C21C20°++Cony )+ (Cr1ChaChn, ) 1S & prod-
uct of k disjoint cycles of lengths nq,ns, ..., ng, respectively. Then

afat = aCiCy-Cra™t

= aCia™t-aCya!

"’Oka-Oé_l

= afcricizcin, )t - alegrcagr-Con, ) a(Cpi Cra e+ Chny Y

= (a(en)a(cz)alcin,)) - (a(ca)a(caz)acan, ) ) (acrr)a(cra) - a(crn, ))

is also a product of k cycles of lengths ny,ns, ..., ny

7. BEBRER ERATE S, &, 8 IR afa ! BRI Ccycle structure (HERR
FHT —4), MEEEEERKMLERE conjugate K& group action HIRHEIEHE EE,

Let o and S belong to S,,. Prove that Saf~! and « are both even or both odd.
1B, 1KRJ LA Exercise 5.51, WA PAET &R even-odd,

Let n be an odd integer greater than 1. Viewing D,, as a group of permutations of a
regular n-gon with consecutive vertices labeled 1,2, ...,n, explain why the rotation
subgroup of D,, is a subgroup of A,,.

R, ((12--n)) = (1n)(1 n—1)-(12)) < A, because n is odd.
7. (RECERET RS,

o THE:(1234) = (14)(13)(12),

o FHABHE:(1234) = (12)(23)(34),
EAI LB E LA TREIK,

Let n be an integer greater than 1. Viewing D, as a group of permutations of a
regular n-gon with consecutive vertices labeled 1,2, ..., n, determine for which n all
the permutations corresponding to reflections in D,, are even permutations. Hint:
Consider the fours cases for n mod 4.

E7. Write down some easy cases n = 3,4,5,6,7,8. Then you will discovery some-
thing.
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5.61

5.65*

5.66*

Proof. n=2k+1, k is even. [ ]

Show that As has 24 elements of order 5, 20 elements of order 3, and 15 elements
of order 2.

Proof. There are 2 = 24 elements are of type (12345).

There are (g)%' = 20 elements are of type (123).

5\(3
There are (2)2# = 15 elements are of type (12)(34). n

Show that every element in A,, for n > 3 can be expressed as a 3-cycle or a product
of three cycles.

R,
e Lemma: Any permutation could be express as a product of transpositions (2-
cycle). For instance, (12345) = (15)(14)(13)(12) or (12345) = (12)(23)(34)(45).
e Ifn >4, without loss of generality, (12)(34) = (123)(234) and (12)(23) = (123).

Proof. 1f n = 3, then Az = {e = (123)3,(123),(132)}. Every element in Aj is a
3-cycle or a product of three cycles.

From now on, we suppose that n > 4. Recall that any permutation could be express
as a product of transpositions (2-cycle). Thus, any element in A,, could be express as
a product of even number of transpositions. Since n > 4, there are three possibilities
of a product of two transpositions.

(12)(34) = (123)(234),
(12)(23) = (123),
(12)(12) = e.

Therefore, every element in A,, is a 3-cycle of a product of three cycles.

Show that for n >3, Z(S,) = {e}.
R,
e Lemma: Every permutation can be written as a product of disjoint cycles

e Suppose that e # 0 € S,,. By Lemma, 0 =917 v,. W.L.O.G., if 7 = (123--+),
then o(12) # (12)0, a contradiction.

If 4199 = (12)(34), then o(23) # (23)0.
If o = (12), then ...

Proof. Suppose that e # o € S,,. Decomposite ¢ into a product of disjoint cycles,
write o = Y172 V-

Case I: v = (123--+). Then 0(12) # (12)0 and o ¢ Z(5,,).

Case II: 717, = (12)(34). Then 0(23) # (23)0 and o ¢ Z(S,,).

Case III: 0 = (12). Then 0(123) # (123)0 and o ¢ Z(S,,). |
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5.69 Prove that every element of S, (n > 1) can be written as a product of elements of

5.77*

the form (1k).
f®7R. Note that if C = (¢1co:--¢¢), then

C = (cieo¢y)
(1e)(Ley)(ereorcy)
(1er)(1eres...cp)
(1er)(1e) (Legr)-(1ea) (Leq)

Suppose that § € .S,. By Theorem 5.1, we can write # as a product of k disjoint
cycles of lengths nq,no, ..., ng, respectively. That is,

B=C1Cy--Cy = (CHCIQ"'Clnl)(021022"'02n2)"'(CklckZ“'Cknk)-

Then
B = (Lew)(Lewn, )+ (Lerz) (Terr )+ (Tekn) (Lekn, )+ (Lewz ) (1ck1).

Why does the fact that the orders of the elements of A4 are 1, 2, and 3 imply that
1Z(A4)| =17

R, Hab=ba+e themfab=tema o~ Suppose that e # a € Z(A,) and |a|
Then pick b € Ay such that ab # e and |b] = 2. We have |ab| = l.c.m.(Ja, |b]) =

contradiction.

Proof.
Lemma 1: If |a] and |b] are two distinct prime, then (a) n (b) = {e}.

Proof of Lemma 1: Suppose that ¢ € (a) n(b). By Lagrange’s Theorem, |c| divide
la| and |b]. Since |a| and |b] are relatively prime, we have |¢| =1 and ¢ =e.

Lemma 2: If ab = ba and (a) n (b) = {e}, then |ab| = L.c.m.(|al,|d]).

Proof of Lemma 2:

la| divide r and |b] divide r

r is a common multiple of |a| and |b|

If (ab)" =¢
ab=ba

= e—(ab)T Loy
= € {a)n (b) = {e}
= a =b"=¢
= a" =0 =¢
=
=

= the least common multiple of |a| and |b| is the order of ab.

Proof of the Problem: If ¢ # ¢ € Z(Ay), pick an element g € Z(A4) such that
g #e and |g| # |¢|. One can write down all the elements of A;. Then conclude that
such element g must exists. Since |g| # |c| € {2,3}, by Lemma 1, we have (g) n(c) =
{e}. Since ¢ € Z(A;), by Lemma 2, we have |gc| = L.e.m.(|g|,|¢|]) = 6 ¢ {1,2,3}, a

contradiction.

Rk B iR: Hab="ba+e thenfab="rem{a o Suppose that e # a € Z(A4) and
= 3. Then pick b € Ay such that ab # e and |b| = 2. We have |ab| = l.c.m.(|al,|b]) = 6,

a contradiction. ]
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TS 5.A Nk HEFRERI A

3€Z7, 3-5=15=1, s0 371 =5.

23 =8 =0¢Zs, |2 =37

In U(9), (2) =?

In Zg, (2) =7

3€¢Z;, 3=3, 32=9=2, 3326, 39=4, 3°=5, 36=1, so |3 = 6.

#i75 5.B Calculate all conjugacy classes for the groups Ss, Sy, D4, D5, A4 and Qs.

Proof.
e In 53,
orbit(e) = {e},
orbit((12)) = {(12),(13),(23)},
orbit((123)) = {(123),(132)}.
In S4,

orbit(e) = {e},

orbit((12)) = {(12),(13),(14),(23),(24),(34)},
orbit((123)) = {(123),(132),(124), (142), (134), (143), (234), (243)},
orbit((1234)) = {(1234),(1243), (1324), (1342), (1423), (1432)},
orbit((12)(34)) = {(12)(34), (13)(24), (14)(23)}.

Lemma: In S,, two permutations are conjugate if and only they have the
same cyclic structure.

Proof of Lemma: (=) By cycle decomposition theorem, any permutation o
can be writed as a product of some disjoint cycles. That is, o = y1y5---y,, for
some cycles 71, 72, ..., Vm. Consider a conjugate gog=! of o. Then

909 = gV Ymg = 9ng T 920 g vmg

W.L.O.G., suppose that v, = (ij---). Then gy197' = g(ij--)g™' = (9(¢) g(j)--).
You can verify the last identity directly by compute g(ij---)g=1(g(7)).

(<) If two cycles v = (ij---) and 4" = (kl---) have the same cycle structure,
then let o be the permutation such that o(i) = k, 0(j) = k, ... Then oyo~! =
(o(i) o(j)-) = (kl---) =+'. That is, v and 4" are conjugate.

In Dy ={1,a,a?,a3 b,ba,ba® ba? ||a| = 4,|b| = 2, aba = b},

orbit(1) = {1},

orbit(a) = {a, a’},

orbit(a?) = {a?},
orbit(b) = {b, ba?},
orbit(ba) = {ba, ba®}.
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This is an example which shows that how to know the geometric interpretation
of an element in D,,.

N N
1 2 4 1 3 4 4 3
_a _a _b
4 3 3 2 2 1 1 2
ba?

EE, MERETER AR,
In D5 ={1,a,a? a3, a* b,ba,ba’, ba’, ba* | |a| = 5, |b| = 2, aba = b},

orbit(1) = {1},
orbit(a) = {a, a'},
orbit(a?) = {a* a*},

orbit(b) = {b, ba, ba*, ba®, ba'}.

Note that in D,,, two elements in the same conjugacy class if and only if they
are the same type of symmetry.

BhEGRZVEZRER D, FHEEconjugacy class HHYE—EIT R ATAIRE &g
NEEH S, MEZR—{Econjugacy class H1HYIT R 2% ] BHAE [ BA 1Ro
e In Ay,

orbit(e) = {e},

orbit((123)) = {(123), (134), (142), (243)},
orbit((132)) = {(132),(124),(143),(234)},
orbit((12)(34)) = {(12)(34), (13)(24), (14)(23)}.

Note that in A,, two permutations have the same cycle structure are not
necessarily in the same conjugacy class.

e The conjugacy classes of Qg see the next Exercise.

wF. BEdeBEE, BgR, FERRET, NMEheE—REHE,

fiiFS 5.C Let G be any group. Prove that the map from G to itself defined by g — ¢2 is a
group homomorphism if and only if G is abelian.
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Proof. Let 6 be the mapping from G to itself defined by g - ¢g?. For any a,b € G,

0(ab) = 6(a)b(b)

< (ab)2 = a’b?
<  abab = aabb
< ba =ab.

6 Chapter 6

6.2 Find Aut(Z).

iEm. Suppose that 6 € Aut(Z). Since 6 is onto, suppose that #(n) = 1. Then

6 is a homomorphism

1=6(n) 2 né(1)
and 6(1) € {1,-1}.
6.3 Let R* be the group of positive real numbers under multiplication. Show that the
mapping ¢(x) =/ is an automorphism of R*.
6.4 Show that U(8) is not isomorphic to U(10).

{e~. Observe the order of each element.

Proof. U(10) ={1,3,7,9} has an element of order 4, but U(8) = {1,3,5,7} doesn’t
have such element. [ ]

6.5 Show that U(8) is isomorphic to U(12), where U(n) is a group under multiplication
modulo n.

Proof. You can construct a mapping 6 : U(8) — U(12) defined by #(3) = 5 and
6(5) = 7. Then verify 0 is an isomorphism.

Another way is note that there are only two groups of order 4 up to isomorphism.
That is, the cyclic group of order 4 and the Klein four group Z, @ Z,. U(8) and

U(12) both have no element of order 4, That is, they are not cyclic group. Therefore,
U(8)§Z2@Z2§U(12) |

6.7 Prove that Sy (symmetric group of degree 4) is not isomorphic to Doy (dihedral
group of order 24).

Proof. ZORFRIZRMEE: Since Z(S4) = {e} and Z(Dqy) = {1,a5}, we get |Z(S,)| =
1+2= |Z(D24)| and Sy # Dy,.

There are exactly 9 elements of order 2 in Sy. They are
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(12), (12)(34),
(13), (13)(24),
(14), (14)(23).
(23)7
(24)’
(34)’

But there are exactly 13 elements of order 2 in Doy = {(a,b) | |a| = 12,|b] = 2,ab =
ba~'}. They are a8 and ba’, where : =0,1,2,...,11. [ ]

6.8 Show that the mapping a — log;,a is an isomorphism from R* under multiplication
to R under addition.

6.9 In the notation of Theorem 6.1, prove that T, is the identity and that (7)™ = T-1.

®m. TyT,=T,, =T, and by p.51, thm.2.3.

6.10 Let G be a group. Prove that the mapping a(g) = g7! for all g in G is an automor-
phism if and only if G is abelian.

6.15 If G is a group, prove that Aut(G) and Inn(G) are groups.

6.18 Let H be the subgroup of all rotations in D,, and let ¢ be an automorphism of
D,,. Prove that ¢(H) = H. (In words, an automorphism of D, carries rotations to
rotations.)

&2, For any automorphism of D,,, we show that ¢(a) € (a). If ¢(a) = ba’ for some
i€ Z, then ¢(a?) = [¢(a)]? = (ba?)? =1 = ¢(1). Since ¢ is one-to-one, we get a? = 1.
Which is impossible because |a] = n > 3 (c.f. p.34, the definition of the dihedral
group).

6.25 Identify a group G that has subgroups isomorphic to Z,, for all positive integers n.

2. {2eC|]2|=1).

6.27 Let r € U(n). Prove that the mapping « : Z,, - Z,, defined by «a(s) = sr (mod n)
for all s in Z,, is an automorphism of Z,.

6.31 Suppose that ¢ is an isomorphism from a group G onto a group G. Show that ¢!
is an isomorphism from G onto G.

6.32 Prove property 4 of Theorem 6.3. Suppose that ¢ is an isomorphism from a group
G onto a group G. Then if K is a subgroup of G, then ¢(K) = {¢(k) |k e K} is a
subgroup of G.

Proof.
e Closed:
K<G ¢ is a homomorphism
0(k), (ko) € S(K) ki ks € K = by € K = o(k)d(ks) £ ¢(kiks) € (K.



6.33

6.35

6.39

6.42

6.43

e Identity: For any 7 € G, since ¢ is onto, there exists z € G such that ¢(z) = Z.
Thus, To(eq) = ¢(x)d(eq) = p(xeq) = ¢(x) =T. Similarly, ¢(eq)T = 7. That
is, ¢p(eq) = eq.

K<G=egeK=eg=¢(eq) € d(K).

e Inverse: Since ¢(k)p(k™1) = ¢(kk™') = ¢(eq) = eg = ¢(k71)p(k), by the
uniqueness of inverse in a group (p.51, thm.2.3), ¢(k™1) = ¢p(k)~L.

K<G, k ek

b(k) e p(K) ke K = o(k) = o(k) € ¢(K).

Referring to Theorem 6.1, prove that T is indeed a permutation on the set G.

#. Show that T, is one-to-one and onto.

Show that the mapping ¢(a+bi) = a—bi is an automorphism of the group of complex
numbers under addition. Show that ¢ preserves complex multiplication as well (i.e.

o(zy) = ¢(x)p(y) for all z and y in C).

Let C be the complex numbers and

e o)

Prove that C and M are isomorphic under addition and that C* and M*, the
nonzero elements of M, are isomorphic under multiplication.

Suppose that G is a finite abelian group and G has no element of order 2. Show
that the mapping g — g2 is an automorphism of G. Show, by example, that if G is
infinite the mapping need not be an automorphism.

Proof. Let ¢ be the mapping on G defined by ¢(g) = g%. Since G has no element
of order 2, the kernel of ¢ is

kerg = {geG|¢(g) = e} = {e}.

Thus, ¢ is one-to-one. Since ¢ is a one-to-one mapping on G and G is finite, we
have ¢ is onto. We show that ¢ is a homomorphism. For any ¢, g2 € G,

G abelian

#(9192) = (9192)2 : 9%95 = ¢(91)9(92)-

In the case G = Z, ¢ is defined by ¢(m) = 2m. ¢ is not onto because an odd number
1 in Z has no preimage in Z under ¢. [

Let G be a group and let g € G. If z € Z(G), show that the inner automorphism

induced by ¢ is the same as the inner automorphism induced by zg (that is, that
the mappings ¢, and ¢,, are equal).
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Proof. For all a € G,

2eZ(G)
1

b-g(a) = (z9)a(zg) ™' = zgag™' 2" gagtzz"t = gag™ = d4(a).

6.45 Suppose that g and h induce the same inner automorphism of a group G. Prove

that h~lg e Z(G).
Proof. For all a € G,

(hlg)a = (h'g)a-e
= h'ga(g™'g)
= h7'(gag™)g
= h71¢g(a)g
= h'on(a)yg
= h7'(hah™)g
= (h'h)ah™g
= a(h™yg).

6.48 let ¢ be an isomorphism from a group G to a group G and let a belong to G. Prove
that ¢(C(a)) = C(¢(a)).

Proof. (<)

yeo(Cla))
= y=¢(x),reC(a)
= y=¢(x),ra=ax |
= yo(a) = ¢(x)¢(a) < ¢(za) = ¢(ax) = p(a)p(x) = ¢(a)y
= yeC(¢(a))

(2) Suppose that y € C(¢(a)). Then yo(a) = ¢p(a)y. On the other hand, since ¢ is
onto, assume that ¢(z) =y. Then

o(x)d(a) = yo(a) = ¢(a)y = ¢(a)p(x)

= ¢(za) = ¢(x)(a) = p(a)¢(x) = ¢(ax)
& oni-to— ne )

= xeC(a)

= y=0(z)ep(C(a))
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6.53

p.183,37

7 6.A

7.1

Let a belong to a group G and let |a| be finite. Let ¢, be the automorphism of G
given by ¢,(z) = axa™'. Show that |¢,| divides |a|. Exhibit an element a from a
group for which 1 < |@,] < |al.

. P.79, cor.2. Dy.

Proof. (qzﬁa)‘“'_: @glal = Ge, note that ¢, is the identity map on G, or says, the identity
in the group G = {¢, | g € G}. Thus, |¢,| divides |a| by p.79, cor.2.

Cosider a € Dy = {1,a,a?,a3,b,ba,ba?,ba? | |a| = 4,]b] = 2,ab = ba~'} and ¢,(a) =
aaa~t =a + 1. Thus, ¢, # ¢1. For any x € Dy,

a’a’(a®) 1 =d =z if x =at;

(0a)*(2) = P2 () = { a?(ba’)(a?)~! = (a?b)a’a™? = (ba=?)a’a 2 = ba' = x if x = ba'.
Therefore, (¢,)? = ¢1 and 1< |p,| =2 <4 =al. |
fare. EBEHoEHE, HMUEE group action WKRHE S HFEMETER.

Prove or disprove that Dy = Z3 @ Dj.

Proof. D15 has 13 elements of order 2, but Zs & D, only has 5 elements of order 2.
ThUS, Do ¢ Zs @ Dy. |
If a and g are elements of a group, prove that Cg(a) is isomorphic to Cg(gag™).
IR, If you want to construct a function f: Cg(a) = Cg(gag™), then you should
prove that f is well-defind. That is, for all b€ Cg(a), f(b) € Ca(gag™).
Proof. We define a function f: Cg(a) - Ce(gag™) by f(h) = ghg™".
he Og(a)
ha = ah
f(h)(gag™) = (ghg™")(gag™") = gh(g™" g)ag™
= g(ha)g™ = g(ah)g™" = (9ag™*)(ghg™) = (gag™) f(h)

= f(h) € Calgag™).
Thus, f is well-define. [ ]

Y

Y

7 Chapter 7

Let H = {(1),(12)(34),(13)(24),(14)(23)}. Find the left cosets of H in A, (see
Table 5.1 on page 111).

Proof.

=
Il

{e,(12)(34), (13)(24), (14)(23)},
(123)H = {(123),(134),(243), (142)},

(132)H = {(132),(143), (234), (124)}.
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7.2

7.6

7.7

7.10

7.11

7.12

7.13

7.14

7.18

Let H be as in Exercise 7.1. How many left cosets of H in Sy are there? (Determine
this without listing them.)

Proof. [Sy: H] =|S4|/|H|=24/4 = 6. |
Let n be a positive integer. Let H = {0, +n,+2n,+3n,...}. Find all left cosets of H
in Z. How many are there?

Proof. H1+H,2+H,....(n-1)+ H. [ |
Find all of the left cosets of {1,11} in U(30).

Proof. {1,11},{7,17},{13,23},{19,29}. |
Give an example of a group G and subgroups H and K such that HK ={h e H k¢

K} is not a subgroup of G.

R, S;.

Proof. Let H = ((123)), K = {(12)) < S;. Then HK = {e,(123),(12),(13)} and
(123)2 ¢ HK. n

If H and K are subgroups of G and ¢ belongs to G, show that g(HnK) = gHngK.
BR. (2) If gh=gkegHngK, then h=k.

Lt a and b be nonidentity elements of different orders in a group G of order 155.
Prove that the only subgroup of G that contains a and b is G itself.

Proof. Suppse that {a,b} € H < G. If |a| = 155 or |[b| = 155, then H = G. So we
assume |a| = 5 and |b| = 31. Then by Lagrange’s Theorem, |a| divides |H| and |b|
divides |G|. Since ged (|al,[b|), by Exercise 0.6, 155 = 5-31 = |a| - |b| divides |H| and
H=@G. |

Let H be a subgroup of R*, the group of nonzero real numbers under multiplication.
If R* ¢ H ¢ R*, prove that H = R* or H = R*.

R,
?
—_—
R* < H < R*.
— =~
? ?
Let C* be the group of nonzero complex numbers under multiplication and let

H={a+bieC*|a%2+b?>=1}. Give a geometric description of the coset (3 + 4i)H.
Give a geometric description of the coset (¢ + di)H.

Proof. The circle with radius /32 + 42 = 5 on the complex plane. [ ]
Recall that, for any integer n greater than 1, ¢(n) denotes the number of positive

integers less than n and relatively prime to n. Prove that if a is any integer relatively
prime to n, then a®™ (mod n) = 1.
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B3, Apply Lagrange’s Theorem on U(n).

7.20 Use Corollary 2 of Lagrange’s Theorem (Theorem 7.1) to prove that the order of
U(n) is even when n > 2.

. (-1)#1eU(n) when n > 2.

Proof. By Lagrange’s Theorem, |- 1| =2 divides U(n). [ |
7.23% Suppose that H is a subgroup of S; and that H contains (12) and (234). Prove

that H = 84.

R,

(a) Note that (234) € H and 3 =1(234)|, by Lagrange’s Theorem, 3 divide

(b) Note that (1234) = (12)(234) € H and 4 =|(12)(234)| = |(1234)|, by Lagrange’s
Theorem, 4 divide

(¢) Recall that if a | ¢ and b | ¢ and ged (a,b) = 1, then ab | ¢. Thus, _ divide
|HI.

(d) In addition, by Lagrange’s Theorem, |H| divide |G|. Thus, |H|e{___,24}.

(e) If |H| =12, then H=___ . But (12) € H, a contradiction.

(f) Therefore, |[H| =24 and H =

Proof. Note that 3 = |(234)| divide |H| and 4 = [(12)(234)| = |(1234)| divide |H|.
Recall that if a | ¢ and b | ¢ and ged (a,b) = 1, then ab | ¢. Thus, 12 divide |H|. But
(12) € H implies that H # Ay. Therefore, H = S,. n

7.24* Suppose that H and K are subgroups of G and there are elements ¢ and b in G
such that aH c bK. Prove that H ¢ K.

(a) BRIMEEZBWH H c K, UREHPHTEN he H, HMEF
(b) EEHRMREGEMEES oH c 0K, BT FEEMFEGIR S, BRMEREEL R
B ah BN TE, EE—K AT LUEE] ah = bk for some k € Ko FTLA
h=(ata)h=a"(ah)=a'(b__ )

(c) RMWBEERBH h=a(b_ ) e K, BRMERIE ¢ K T, HEERMIH
E o b BTAEHBR K

(d) ERMEE, GERE tricky,) MW 1e H, Mla-1eaHes __  Filla=__ |
Halb=_ €K,

Proof. Note that a-1 € bK and a-1 = bk for some k € K. It follows that a='b = k=1 € K.
For all h e H,

aHSbK

h=(ata)h=a'(ah) % a'(bk')=(a D)k =kk ¢K.

That is, H ¢ K. n
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7.26

7.27

7.28

7.31%

Suppose that G is a group with more than one element and G has no proper,
nontrivial subgroups. Prove that |G| is prime. (Do not assume at the outset that
G is finite.)

e, Let g # e € G. Consider (g).

Proof. Let g #+ e € G. Then (g) = G. That is, G is cyclic. By the Fundamental
Theorem of Cyclic Group, for each divisor d of |G|, there exists a unique subgroup of
order d. But there are only two subgroups of G, {e} and G. Hence, |G| is prime. m

Let |G| = 15. If G has only one subgroup of order 3 and only one of order 5, prove
that G is cyclic. Generalize to |G| = pq, where p and ¢ are prime.

.

(a) Let H and K be the only one subgroup of G which is of order 3 and 5,
respectively.

(b) By the Corollary of The Lagrange’s Theorem, H n K = . Hence, |HUK]| =

(c) Pick an element e # g € G, g ¢ Hu K. By Lagrange’s Theorem, |g| divide
Gl =___. Thus, |gle {3, }.

(d) If |g| = 3, then (g) is another subgroup of order distinct from H, contrary
to the uniqueness of

(e) If |g| = 5, then ...
(f) Therefore, |g| = and G = ( ).

Proof. Let H and K be the only one subgroup of G which is of order 3 and 5,
respectively. By Lagrange’s Theorem, |HNnK|=1and HnK = {e}. Hence |[HUK| =
7. Since |G| =15 > 7, we can pick an element g € G such that e # g ¢ HU K. By the
Lagrange’s Theorem, |g| € {3,5,15}. If |g| = 3, then (g) is another subgroup of order
3 distinct from H, contrary to the uniqueness of H. Similarly, |g| # 5. Therefore,
lg| = 15 and G is a cyclic group generated by g. [ |

Let G be a group of order 25. Prove that G is cyclic or ¢g° = e for all ¢ in G.
Generalize to any group of order p? where p is prime. Does your proof work for this
generalization?

Proof. By Lagrange’s Theorem, any nonidentity element in G is of order 5 or 25.
If there exists g € G such that |g| = 25, then G is cyclic. If G is not cyclic, then for
any nonidentity element g in G, we have |g| = 5. |

Can a group of order 55 have exactly 20 elements of order 117 Give a reason for
your answer.

.
(a) If there are exactly 20 elements of order 11, then suppose that a € G and
la] = 11.
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7.33

(b) By Lagrange’s Theorem, the element in (a) except e is of order ___
(c) Pick b ¢ (a) and || = 11.
(d) If c € (a) n (b), then by Lagrange’s Theorem, |c| e {1, }.

(e) If |¢| = 11, then (a) = (___ ) = (b), a contradiction.
(f) Thus, (a)n(b)=__

)

(g) The number of elements of order 11 in (a) u (b) is
Proof. No such group exists. We prove the assertion by contradiction. Suppose
that GG is a group of order 55 and have exactly 20 elements of order 11.

By Lagrange’s Theorem, If g € G, then |g| divide |G| = 55 and |g| € {1,5,11,55}.

If there exists an element g of order 55, then G is a cyclic group. In this case,
G = (g). Then g5 ¢'° ¢g'5,¢%0, ..., g%, these 10 elements are all the element in G
which is of order 11, a contradiction.

Suppose that there is no element in G with order 55. Then for all g € G, |g| €
{1,5,11}. Suppose that a € G and |a| = 11. All the elements in (a) except e is of
order 11. Pick b ¢ (a) and |b] = 11. If e # c € (a) n (b), then by Lagrange’s Theorem,
lc| =11 and (a) = (c) = (b), a contradiction. Thus, (a) n (b) = {e} and (a) U (b) — {e}
exhaust all the 20 elements of order 11.

Then there are |G| —|{a) U (b)| = 55 — 21 = 34 elements whose ordre is 5. Note that if
g1 # g2 are two distinct elements of order 5, then (g;) contains 4 elements of order
5 and (g1) N (g2) = {e}. But 4 does not divide 34. Thus, it is impossible that there
are 34 elements of order 5. [ ]

Let H and K be subgroups of a finite group G with H ¢ K ¢ G. Prove that
[G:H]=[G:K]-[K:H].

R EEEEAEET, EEIEEER. MEKHR, RE2WREFE —ME subgroup
tower, H < K < G, BETERIME index tHRGEREER index, k2

nm
—_—

H <K <.

={in
s{in

EEEHEAN—EEKRE finite group, RE index =& finite FULF, HFELE,
[G:H]<oo< [G:K]<ooand [K: H]< oco.

Proof. (<) Suppose that [G : K] =m and [K : H] = n. Let G = U ;K and

KNy K =@ when k #1. Let K = U?:1 y;H and y,H ny,H = @ when s #t. We

show that G' = U;, U?:l xy; H and z;y; H # x,y,H if @ # u or j # v, as the following
figure indicates.
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G:UI.’:LI z; K

4 .
= T,=x;and 7=u

ziyjH:zquH

:l> ng = va

K=U§-L:1 y; H
1 .
= Y=Yy and j=v

7.38 Prove that if G is a finite group, the index of Z(G) cannot be prime.
{275, P.194, thm.9.3.

Proof. Lemma: If [G: Z(G)] is prime, then G is abelian.

Proof of Lemma: If [G: Z(G)] = p and G is not abelian, then there exists a,b € G
such that ab # ba. Consider the tower of groups

p

Z(G)<C(a,b)<C(a) <G,
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7.42

7.43

1 5.23, 7.46

7.47

where C(S) = {g € G | gs = sg for all s € S} is the centralizer of S. If S =
{ai, a9, ..., a,}, then we write C(S) as C(ay, as, ..., a,) instead of C'({ay, as,...,a,}).
Since there exists b € G, ba # ab, we have C'(a) #+ G and [G : C(a)] # 1. Since
aeC(a), a¢C(a,b), we have C(a,b) # C(a) and [C(a) : C(a,b)] # 1. Contrary to
that [G: C(a)]-[C(a): C(a,b)] divides [G: Z(G)] =p

Proof of Exercise: If [G: Z(G)] is a prime, by Lemma, G is abelian. It follows
that Z(G) =G and [G : Z(G)] =1, a contradiction.

Advanced Method: If [G: Z(G)] is prime, then by p.194, thm.9.3, G is abelian
and Z(G) =G and [G: Z(G)] =1, a contradiction. n

Let G be a finite abelian group and let n be a positive integer that is relatively
prime to |G|. Show that the mapping a - a” is an automorphism of G.

R,

(
(

a) Let 0 be the mapping defined by 0 : a - a™.

)
b) We show that 6 is onto.
(¢) Since ged (n,|G|) =1, there exist z,y € Z such that
(d) Then
a:alzaizazn. = ...

Proof. Let 0 : G - G be the mapping defined by 0(g) = g*. Then

G abelian
0(ab) = (ab)™ £ a"b" = 0(a)b(b).
That is, 6 is a homomorphism.

Since ged (n,|G|) = 1, suppose that nx + |Gly = 1. Then by Lagrange’s Theorem,
al¢l = e and

a = anz+|G|y — (a:p)n X (a|G\)y — (a:r)n
That is, 6 is onto. Which implies that 6 is one-to-one. (Suppose that a function
f:A— Band |A|=|B|<oo. Then f is one-to-one if and only if f is onto.) [

Let G be a group of permutations of a set S. Prove that the orbits of the members
of S constitute a partition of S.

— def. . . .
R, s1~ 89 < 51 = ¢g(s2) for some g € G. Prove that “~” is an equivalence relation

on S.

Prove that a group of order 12 must have an element of order 2.

1E7R. Recall that a group of even order must have an element of order 2.

Proof. Recall that a group of even order must have an element of order 2. See
Assignment 1 Problem 5(b). n

Show that in a group G of odd order, the equation 22 = a has a unique solution for
all a € G.
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7.57

8.3

8.10

8.17

8.22

Proof. Define a mapping 6 : G - G by 0(g) = g>. Then for all a € G, since G is
of odd order, we ave |a~!| = 2s + 1 for some s € Z and e = (a71)?*! = (a™%)2%a!
and a = (a=%)2. Thus, 6 is onto. It follows that 6 is also one-to-one because its
domain and its codomain are finite and has the same cardinality. (If f: A - B and
|A| = |B| < o0, then f is one-to-one < f is onto.) n

Let G=GL(2,R) and H = SL(2,R). Let A € G and suppose that det A = 2. Prove
that AH is the set of all 2 x 2 matrices in G that have determinant 2.

8 Chapter 8

Let G be a group with identity e and let H be a group with identity ey. Prove
that G is isomorphic to G @ {ey} and that H is isomorphic to {ey} ® H.

Proof. Define 6 : G - {en} by 6(g) = (¢9,exn). Show that 6 is an one-to-one and
onto homomorphism (an isomorphism). |

How many elements of order 9 does Z3 & Zgy have?

. 18.

Proof. There are 6 elements of order 9 in Zg. They are {1,2,4,5,7,8}. Since every
elements in Zs is of order 1 or 3, both divide 9. Therefore, there are 18 elements of
order 9 in Zs @ Zg. They are

(07 ]‘)7 (07 2)7 (074)7 (07 5)7 (07 7)7 (078)7
(1,1),(1,2),(1,4), (1,5), (1,7), (1,8),
(2,1),(2,2),(2.4),(2,5),(2.7), (2,8).

If G® H is cyclic, prove that G and H are cyclic. State the general case.

Proof. [J3i&—] Suppose that G ® H = ((g,h)). Then for any a € G, (a,ey) =
(g,h)™ = (g™, h™) for some m € Z and a = g™. Hence, G = (g).

[T5EZ, RREIEOBIBZIRME] Note that there is a subgroup A of G ® H such that
Ge{ey} 2 Ac Ge H. Recall that a subgroup of a cyclic is also a cyclic group.
Thus, by Exercise 8.3, G2 G @& {ey} = A is a cyclic group. |

Determine the number of elements of order 15 and the number of cyclic subgroups
of order 15 in Zizo ® Zioyg.

Proof. There are 48 elements in Zgy ® Zsg whose order is 15.

la| = 3,|b| =5 a€{10,20},b € {4,8,12,16)
la] = 15,0 = 1 a€{2,4,8,14,16,22,26,28}, b€ {0}
la| =15, =5 | a€{2,4,8,14,16,22,26,28},b € {3,6,9,12}
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8.27

8.41

In a cyclic subgroup H of order 15, there are ¢(15) = 8 elements of order 15 in H. (If

H = (h), then |h"| = —2— and {h" € H | ged (15,7) = 1} = {h', h2, b4, 17, b8, b1, h13, h14}

ged (15,r)
is the set of the element of order 15 in H.) Thus, there are % =6 cyclic subgroups
of order 15. [ ]

Let G be a group, and let H = {(g,9) | g € G}. Show that H is a subgroup of G&G.
(This subgroup is called the diagonal of G @ G.) When G is the set of real numbers
under addition, describe G @ G and H geometrically.

Proof. Obviously, (eg,eq) € H.
If (a,a),(b,b) € H, then (a,a)- (b,b) = (ab,ab) € H.
If (a,a) € H, the inverse of (a,a) in G® G is (a~!,a™!), which is also in H. u

Prove that Dse Dy ;é Dis ® Z5.

. —MRER, EEHME group G BB Gy & isomorphic, &N, KBEEMR
il group G| IR Gy ZHEE—EHH, EEEEWLER one-to-one and onto, FRIAHE
7& homomorphism, ;BB E EEK, BEMEREHRERNREREE—LER, &
R E— B ES,

BHEXEH, BEAR—FRAMAEERYN, BME %, EEAE, K0T, #HF;
KT, Hido

FlanfEz —n e —/IvE, B C(a) BB C(gag™) Risomorphic, BEFRA] LAE—1H
% C(a) BE C(gag™) WEE, £ h EE ghg™t, AHABE,

FHk, BMEE—ME Gy B Gy B9 isomorphism f K, IRFMERELE Gy BY generator
T, BB R B R EE L generator £ f 2 THIRBERLLF . B0 Dg = (a, b), FTE
FH Do = Gy WG, MMM LIER—EKE f, HERE f(a) & f(b). RE [ LA
E 22— homomorphism, AT D¢ FEHEIRIFTE TCHER K BUEEH generator HYEKELE
WET, B0 f(ba?) = f£(b)f(a?) = f(b)f(a)2

H—FH, BFEH G, B G, T2 isomorphic MHEEE T, B2 BB T EEED
FEREH G, B Gy T isomorphic, R, Er—EHE, MEEMEGEES, /RA)
DA EEEREUEEE http://hobbes.la.asu.edu/groups/groups.html, Y& order
169 group LB 1418, i& 148 group ZREFLEFILT isomorphic #), FrA—MoRER,
B gH TR EERAE A ZE isomorphic, HE F, {IEZEIHEE B E &R IR E
order —1H group, ZIRAIE T2 isomorphic,

AT EVEZARE group G BB Gy T isomorphic BB, AR EREE, HETHRE
— L H FHFEL:
o G| 7 abelian, {H Gy A7 abelian, HILE AT UAGE G ¢ Gao
BN Zg BB Sso

o G, E—Mf order B6HITTHR, H Gy %8 order B6HITTER, HILEAIUALE G, ¢
Gao
B De IR Aso

e Gy BTl order 2MTTHE, H Gy RE3MH order B 209TTHK, HILEL A LAAIE
G1 % Gao
B Dg R Aso
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8.59

8.63*

e GG IR G5 isomorphic, G5 BB G, isomorphic, T HEHEMEHN G5 IR G4 T7& iso-
morphic, HELFLAILAALE G, ¢ G, BERER, e

G1§G3$G4§G22>01$G2.

B0 U(10) = Zy, U(12) = K = Zy @ Zo, BRFIEH Zy ¢ Zy ® Zy, AL U(10) #
U(12).

o G IR Gy B center BJAR/INAE, HIELFELAI LIAIE Gy £ Gao
Blan | Z(Ay)| = 1, |Z(Dg)| = 2. BTEL Ay ¢ Deo

EARABREERELSELFE, HERZ isomorphism RJUMEFRIME, MH G, B G, FEM
HE ERAFER, BEMMAILER G, B Gy R isomorphic T

ER, EREREKR G R G, A5 EANRMICREZ AWM —EMEE, M5 L&
EAH R EMIRAHEZIRER T, Eih—8, SEERE T,

Proof. There are exactly 4 elements of order 12 in D3 & D4. They are
But there are exactly 8 elements of order 12 in Dy & Zy. They are

(a,0),(a,1),(a’,0),(a®1),(a",0),(a", 1), (a',0), (a',1).

Let (a,b) belong to Z,, ® Z,. Prove that |(a,b)| divides lem(m,n).

Proof. [735%5—] By Lagrange’s Theorem, |a| divides |Z,,| = m and |b| divides |Z,| = n.
Note that m divides lem(m,n) and n divides lem(m,n). That is, lem(m,n) is a
common multiple of |a| and [b|. Therefore,

Theorem 8.1

I(a,b)] £ lem(|al,|b]) divides lem(m,n)

because the least common multiple divides every common multiple.
[75iEZ, R EOFIRIZHRH] By Lagrange’s Theorem,

la| divides m divides lem(m,n)

and
|b| divides n divides lem(m,n).

Thus, lem(m,n) - (a,b) = (Ilem(m,n) - a, lem(m,n)-b) = (0,0). Then by p.79,
Corollary 2. [ ]

Let p be a prime. Prove that Z, ® Z, has exactly p + 1 subgroups of order p.

#E7. Write down some concrete example. Observe the example and give a conjec-
ture. Verify your conjecture.

Proof.
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8.83*

((1,p-1))
((0,1))

If H is a subgroup of order p, then H must be a cyclic group.

If H is a subgroup of order p, then every elements in H except identity is of
order p.

If H; and H, are any two distinct subgroups of order p, then H; n Hy = {e}.
(If e # g € Hy n Hy, by Lagrange’s Theorem, |g| divide |H;| = p, then |g| = p and
H, = (g) = Hy, a contradiction.)

By Lagrange’s Theorem and Z, ® Z, is not cyclc, every elements in Z, ® Z,

except identity is of order p. Thus, there are p? — 1 elements of order p in
Loy ® L.

Any subgroup of order p has exactly p—1 elements of order p. Therefore, there
are (p?2 —1)/(p—1) subgroups of order p in Z, & Z,,.

(»*-1)/(p-1)
/—/%

N

p-1

7. EE L, E p+ 1 M@ order £ p B subgroup 5

((1,0))
((1,1))
((172)) = {(070)7 (172)7 (274)7 (376)7 ) (p_ 17 (p_ 1>2)}7

{(0,0), (1’0)7 (270)7 (370)a ) (p_ 170)}7
{(070)’ (17 1)7 (272)’ (373)a sey (p_ 1,]7_ 1)}7

{(0’0)7 (Lp_ 1)7 (272(])— 1))7 (373(]7_ 1))7 s (p_ 17 (p_ 1)(]9— 1))}7
{(0,0),(0,1),(0,2),(0,3),...,(0,p-1)}.

Let p1,po, ..., pr be distinct odd primes and nq,ns,...,n; be positive integers. De-
termine the number of elements of order 2 in U(py'py*---p;*). How many are there
in U(2"p}*py*---pp*) where n is at least 37

Proof. Recall that U(p}'p32---p*) 2 U(p1*)eU(py?)@--eU(p.*). By the primitive
root theorem, U(p}?) is cyclic for each i = 1,2,...,k. Since 2 divides p)" - p}*™" =
U(p;")
exists only one cyclic group of order 2. Thus, there is only one element a; € U(p;") of
order 2. Therefore, the set of all elements of order 2 in U(p}*) @ U (py?) ®---@ U (p*)

, by the Fundamental Theorem of Finite Cyclic Groups (Theorem 4.3), there

S ={(b1,ba,....;br) | by € {e;,a;}} — {(e1,ea,...,ex) }

and |S| = 2% — 1, where ¢; is the identity of U(p}").
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Recall that U(2"p}'py2---p*) 2 U2") @ U(p') @ U(psy?) @ - & U(p,"). We show
that there are three elements ¢y, cs and c3 of order 2 in U(2") for any n > 3. Then
the set of all elements of order 2 in U(2") @ U(p}") @ U(py?) ®--- @ U(p,*) is

S = {(C, bl,bg, ,bk) | CE€ {CQ,Cl,CQ,Cg}, bz € {ei,ai}} - {(00,61,62, ...,ek)}

and |S| =4-2% -1, where ¢ is the identity of U(2") and e; is the identity of U(p}").
Note that

Uu@r) = {1,3,5,...,2nt-32nt -1, onlyq oty on-32n-1)
= {1,3,5,..,2"'-3,2"' -1, —-(2"' -1),-(2"*-3),..,-3, -1} (mod?2")
~—
2k+1, —(2k+1)

ke{1,2,3,...,2"72-2}

If [+(2k+1)]*=1

= (2k+1)2=1
= 4k*+4k+1=1eU(2")
= 2" |4k? + 4k
= 2"2 | (k*+k)=k(k+1)

Note that k£ and k + 1 are two consecutive integers, one of them is even and the
other one is odd. It follows that ged (2772,k) = 1 or ged (272,k+1) = 1. Hence,
272 k or 272 | (k+1). Which is impossible because k € {1,2,3,...,2""2 - 2}.

In addition,

n>2
(271 £1)2 =222 00 4 1 =927 272200 4 1 £ 1 U(2M).

Note that when n =2, 271 -1 =1¢€ U(2?) and |21 - 1| =1 # 2. So the condition
n > 3 is necessary.

Therefore, there are three elements 271 + 1, 2"=1 — 1 and (-1) of order 2 in U(2")
for any n > 3.

f7e. WEEHGE U(2") HF 3 order £ 2 BITTRIE? BE KA ERNFIF it KIE
HAEEl, B n=4 K,
12 = 1eU(2Y,
32 =
52 =
7 =
92 =
112 =
132 =
15% =

I

Y

Y

— © © = = © ©

7



E n=5H,

12 = 1eU(2%),

32 =9,
52 = 25,
7 = 17,
9% = 17,
112 = 25,
132 = 9,
152 = 1,
172 = 1,
192 = 9,
212 = 25,
232 = 17,
252 = 17,
272 = 25,
292 = 9,
312 = 1.

#7 8.A (A part of primitive root theorem.) For any odd prime p and any positive integer
n, U(p™) is cyclic.

9 Chapter 9

9.2 Prove that A, is normal in S,,.

Proof. [S, : A,] =2 implies that A, < .S,. See Exercise 9.9. [

. See Exercise 9.9.

a b

9.6 Let H = {[0 d

] | a,b,d e R, ad # O}. Is H a normal subgroup of GL(2,R)?

9.7 Let G = GL(2,R) and let K be a subgroup of R*. Prove that H = {A e G| detA e K}
is a normal subgroup of G.

Proof. Since K is a subgroup of R*, we have 1 € K. Let I be the identity matrix in
G. Thendet/=1€¢ K and [ € H.

If Ml,Mg € G, then detMl,detMQ € K and det (MlMQ) = detM1 . detM2 e K
because K is closed under multiplication. Thus, M;M; € H.

78



9.9

9.12

9.13

9.14

9.15

For any M € G, det (M~!) = (det M)~! € K because K contains the inverse of its
element det M. Therefore, M~ € H.

Finally, for any Ae G and M € H.

det AMA™ = det A-det M -det (A1)
= det A-det M - (det A)™!

R* is abelian

Lt detA-(detA)-det M
= det M € K.

That is, AMA' e H and H < G. [
Prove that if H has index 2 in GG, then H is normal in G

Proof. For any g € G, if g€ H, then gHg™' ¢ H and we are done.

If g ¢ H, since [G: H] =2, then there are exactly two left cosets of H in G. That
is, g and gH. Recall that these cosets partition G. That is, for any a € G, either
a€ H oraegH. For any h € H, if ghg' € H, then we are done. If ghg™ ¢ H,
then ghg™! € gH and ghg™' = ghy for some hy € H. It follows that g = hj'h e H, a
contradiction. ]

. For any ge G, if ge H, then gHg™' ¢ H and we are done.

If g ¢ H, since [G : H] = 2, then there are exactly two left cosets of H in G. That
is, H and gH. Recall that these cosets partition G. ...

7. EETHEFFHEHFTEE, EAEENEEERER, thERMTLAGENGE
([G: H]=2), BRURKRERBRTE (gH g < H),

Prove that a factor group of a cyclic group is cyclic.
Proof. It G ={(g) is a cyclic group and H < G, then G/H = (gH). |
Prove that a factor group of an Abelian group is Abelian.

Proof. If G is an abelian group and H < G, then (aH)(bH) = (ab)H = (ba)H =
(bH)(aH). [

What is the order of the element 14 + (8) in the factor group Zos/(8)?

Proof. Since |Zo4/(8)| = 8, by Lagrange’s Theorem, the order of the element in
Z4/(8) must be a divisor of 8. Compute 2(14 + (8)) =4+ (8), 4(14 + (8)) = 0+ (8).
Thus, |14 + (8)| = 4. u
What is the order of the element 4Us(105) in the factor group U(105)/Us(105)7

Proof. (4U5(105))? = 16U5(105) = Us(105) because 16 € Us(105). So |4Us(105)| =
2. [
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9.16

9.27

9.28

9.29

Recal that Z(Dg) = { Ry, R1s0}. What is the order of the element RgoZ(Dg) in the
factor group Dg/Z(Dg)?

Proof. Compute (RgZ(Ds))? = Ri20Z(Ds), (ReoZ(Ds))? = RigoZ(Dg) = Z(Ds).
So |R602(D6)| =3. |

Let G =U(16), H = {1,15}, and K = {1,9}. Are H and K isomorphic? Are G/H
and G/K isomorphic?

Proof. H=~ K 2 7Z,. But
G/H = {H,3H,3°H,3*H} 2 7, # G|K = {K,3K,5K,TK} 2 Z, ® Z,.
| |

Let G=2Zy Zy, H={(0,0),(2,0),(0,2),(2,2)}, and K =((1,2)). Is G/H isomor-
phic to Zy or Zs @ Z5? Is G/K isomorphic to Z; or Zy & Zy?

Proof. Write down all the cosets of H in G.

H = {(0,0),(2,0),(0,2),(2,2)},

(LO)+H = {(1,0),(3,0),(1,2),(3,2)},
O, +H = {(0,1),(2,1),(0,3),(2,3)},
(LD)+H = {(1,1),(3,1),(1,3),(3,3)}.

Recall that the operation (addition or multiplication) of two cosets is defined by
(a+H)+(b+H)=(a+b)+H.
Then we can write down that Cayley table of the quotient group G/H.

G/H H (1,0)+H (0,1)+H (1,1)+H
H H (1,0)0+H (0,1)+H (1,1)+H
(1,0)+ H | (1,0)+ H H (,1)+H (0,1)+H
(0,1)+H | (0,1)+H (1,1)+H H (1,0)+ H
(L)+H | (1L,)+H (0,1)+H (1,0)+H H

[e] New)

Note that the entries in the main diagonal all are H. Which implies that G/H =
Ly ® L.

Similarly, G/K is isomorphic to Zj. [ |

. Zio ® Zs.
Prove that A4 @ Z3 has no subgroup of order 18.

Proof. Let G = Ay & Z3. If H is a subgroup of G which is of order 18, then since
|Ay @ Zs| = 36 and by Exercise 9.9, H < G. Note that A, has only one normal
subgroup H = ((12)(34),(13)(24)). But |H ® Z3| = 12 and |H & {0}| = 4, both are
not of order 18. Therefore, A, ® Z3 has no subgroup of order 18. [ ]
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9.33

9.37

9.39

. Let G = Ay® Zs. If H is a subgroup of G which is of order 18 then by
Exercise 9.9, H < G. Note that A, has only one normal proper subgroup H =
((12)(34),(13)(24)). But |H @ Z3| =12 and |H & {0}| = 4.

Proof. Let G = Ay ® Z3. 1f H is a subgroup of G which is of order 18, then
since [A4 ®Zs : H] =2 and H < G. Note that A4 has only one normal subgroup
K =((12)(34),(13)(24)). But |[K @Zs| =12 and |H @ {0}| = 4, both are not of order
18. Therefore, A4 ® Z3 has no subgroup of order 18. [ ]

Let H and K be subgroups of a group G. If G = HK and g = hk, where h € H and
k € K, is there any relationship among |g|, |h|, and |k|? What if G = H x K?

Proof. There is no relation between |h|, |k| and |hk|. Let G = D,,, H = (b) < G and
K =(a)<G. Then G=HK. Let h=0, k=a. Then |h|=2,|k|=n,|hk| =2. |k|=n
could be arbitrarily large.

If G=H x K, then |g| = |(h, k)| =1L.c.m.(|h],|k]). n
#®7:. No any relationship. See Exercise 3.48.

Let G be a finite group and let H be a normal subgroup of G. Prove that the order
of the element gH in G/H must divide the order of ¢g in G.

R, p.79, cor.2.

F—8 EER p.210, thm.10.1.3 B ER R,

If H is a normal subgroup of a group G, prove that Co(H), the centralizer of H in
G, is a normal subgroup of G.

Proof. Recall that Co(H) ={g € G| gh = hg for all h € H}. Since 1h = h = hl for
all h e H, we have 1 € Cq(H).

If 91,90 € Co(H), then g1h = hg; and goh = hgy for all h e H. Thus,

go2h=hgg g1h=hgy
(192)h = g1(g2h) £ gi(hgs) = (gih)g2 = (hg1)gs = h(grgs) for all he H
and g1g2 € Co(H).

Suppose that g € Cq(H). For all h e H, since H is a subgroup of G, h™! is also in
H. Hence, gh™' = h~'g. Therefore,

g th=("g)" =(gh™) " =hg™!
and g7t € Co(H).
For any ae G, ge Co(H) and h e H,
aga™'-h = aga”'h(aa™)
= ag(a™)h(a™")a”!
H<aG, (a Y Hten
L agh’'a™
geCg(H), gh'=h"g
= ah/ga™
W=a=lh(a~1)~1
. a(a™)h(a™) " ga!
= h-aga™.
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9.45

9.47*

9.49

That is, aga™! € Co(H) and Co(H) <« G. u

Let ¢ be an isomorphism from a group G onto a group @._ Prove that if H is a
normal subgroup of G, then ¢(H) is a normal subgroup of G.

Let p be a prime. Show that if H is a subgroup of a group of order 2p that is not
normal, then H has order 2.

Proof. By Lagrange’s Theorem, |H| € {1,2,p,2p}. If |H| = p, then [G: H] =2p/p =2
and by Exercise 9.9, H < G, a contradiction. If |H| € {1,2p}, then H is normal in
G, it is impossible. Therefore, |H| = 2. u

{®7R. By Lagrange’s Theorem, |H| € {1,2,p,2p}. If |[H| = p, then by Exercise 9.9, ...

Suppose that N is a normal subgroup of a finite group G and H is a subgroup of
G. If |G/N| is prime, prove that H is contained in N or that NH = G.

Proof. [73iE—] By Example 9.5, NH is a subgroup of G. Consider the subgroup
tower and by Exercise 7.33,

p

N < NH < @G.
7p

—— ——

«{Lp} {Lp}

[737&£Z] If H £ N, then there exists h € H and h ¢ N. Suppose that |G/N| = p.
Then the factor group G/N is of order prime and G/N must be a cyclic group. By
Lagrange’s Theorem, the order of any one element in G/ N except the identity must
be of order p. That is, any one element in G/N except the identity is a generator

of G/N. In particular, Nh + N and
G|N =(Nh)={N,Nh,Nh? Nh3 .. Nh*'}.
Recall that all the right cosets of N in G partition G. Therefore, G = NH. [ ]

I®R. [737E—] By Example 9.5, NH is a subgroup of G. Consider the subgroup
tower and by Exercise 7.33,

p

N < NH < G.

— —
e{1,p} e{1,p}

[7353E5Z) If H £ N, then there exists h € H and h ¢ N. Suppose |G/N| = p. Then
G/N is a cyclic group generated by Nh. That is,

G/N =(Nh) = {N,Nh,Nh* Nh® .. Nh™}.

Therefore, G = NH.

Suppose that G is a non-abelian group of order p?, where p is a prime, and Z(G) #
{e}. Prove that |Z(G)| = p.
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9.50

9.51

9.56

Exa.9.5, 9.57

9.58

Proof. By Lagrange’s Theorem, |Z(G)| divide |G| = p? and Z(G) € {1,p,p? p3}.
Since G is non-abelian, we have |Z(G)| # p?. Since Z(G) # e, we have |Z(G)| # 1.

If |Z(G)| = p?, then [G: Z(G)] = p and G/Z(G) is a cyclic group. By Theorem 9.3,
it follows that G is abelian, a contradiciton. Therefore, |Z(G)| = p. |

{®7R. By Lagrange’s Theorem, |Z(G)| € {1,p,p? p?}. By Theorem 9.3.

If |G| = pq, where p and ¢ are primes that are not necessarily distinct, prove that
1Z(G)| =1 or pq.

#&m. By Theorem 9.3.

Let N be a normal subgroup of G and let H be a subgroup of G. If N is a subgroup

of H, prove that H/N is a normal subgroup of G/N if and only if H is a normal
subgroup of G.

7. B exe.10.51 LEE—T,

Show that the intersection of two normal subgroups of G is a normal subgroup of
G. Generalize.

Proof. Let H and K be two normal subgroup of G. For any a € H n K and
g € G, since H is normal in G, we have gag™' € H. Similarly, gag' € K. Thus,
gagte HNnK and Hn K < G. [

7. FEE LRI TLAELEH Hn K is a subgroup of G.

Let N be a normal subgroup of G and let H be any subgroup of GG. Prove that NH
is a subgroup of G. Give an example to show that NH need not be a subgroup of
G if neither N nor H is normal.

Proof. e=e-ee NH. If nihy,nohy € NH, then

N4G, hynghyleN
-1 -1 4
(nlhl)(nghg) = n1h1n2h1 hlhg = ’I’Ll(hlnghl )hlhg = nlnghlhg e NH
and
Na@, hilnTl(h7l)7len

(nihi) ™" = hi'ngt = hi'ng (hy') 'yt L nshi' € NH.

Therefore, NH is a subgroup of G.
Let G =S5, H = ((12)), K = ((13)). Then HK = {e,(12),(13),(132)} is not a

subgroup of Ss. [ |
R, Ss.
If N and M are normal subgroups of G, prove that NM is also a normal subgroup

of GG.
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9.59

9.61

9.62

Proof. By Example 9.5, NM is a subgroup of G. For any nme NM, g€ G,

N<G, M<G

gnmg™ = gn(grg)mg ' = (gng HN(gmg™) £  n'm’ e NM.
That is, NM < G. m

Let N be a normal subgroup of a group G. If N is cyclic, prove that every subgroup
of N is also normal in G.

Proof. Recall that every subgroup of a cyclic group is also cyclic. Suppose that
H={(am) <N ={(a) <G. Then for any (a™)* € H = (a™) and g € G,

a’eN<G, gasgfleN

g(am)g™t = (gatg " 2 (a')" = (a™) e H.
Therefore, gHg ' € H and H < G. [ ]

7. Recall that every subgroup of a cyclic group is also cyclic. Suppose that
H={(am) <N ={a) <G. Then

o@yg = ey L @ @yen
7. EREEN—FEEZERRZL D, FEL normal subgroup. R (a) < D,
H (a) is a cyclic group, ATEA (a™) < D,,.

Let H be a normal subgroup of a finite group G and let x € G. If ged (||, |G/ H]) = 1,
show that z € H.

Proof. [J3i&—] By Exercise 10.46, |xH| divides |z|. By Lagrange’s Theorem, |z H|
divides |G/H|. Hence, |xH|is a common divisor of |z| and |G/H|. Therefore, |xH| =1
and v = H and x € H.

[737&Z] Since ged (|x],|G/H|) = 1, suppose that |z|-m + |G/H|-n = 1 for some
m,n € Z. Then

Lagrange’s Theorem

oH =g H = gletm+IGHIn f = glGlHn fr — (o ) IG/HIn 2 eH = H.
Therefore, x € H. [
Let G be a group and let G’ be the subgroup of G generated by the set

S={a 'y wy | v,y e G}.
fa7e.

o SEREBHMRIRERE K BEEE

o i&{E subgroup G’ M commutator subgroup, BINFIE, ZERBEMEM group
1 classification RYRFBEEBGRTER group series fF & AE, FIRFBRITH & RBEE
W7o
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o TEBMEFTERMY “generates” Fhi2tE

G'= N H.

ScH

WHRFrHIZERY, subgroupfaZ 182 subgroup, FTLA G" #72 subgroup.

o HEBIRE, ¢ MiEmsd S WK/ subgroup, tHELEHR, WER S c H < G, H]

G'c H,

o, BMMERA—-T ¢ EEICRIRM, BEM, TaXEErE#E, sied
BIVERME S iy mREREEEMSR, AT EE, it

G’ = {s]'sy?---spm | s, € S,y e Zym e LT}

BN s3s52s5s5° € G BlZ s3s5'st € G, R, EER sisyls] T—EER sisyt,
K& G ~A—ER abelian,
Fir LA,

G'= () H={s]"sp>sim|s;€eS,rieLymeZ"}.

ScH

RERDR, B EE RILEE “generate” KRS, B EHGZITRERBER span,
BEE_(AERBEHERE, MEAEZRATLIHEEZHEM algebraic structure HJ
substructure generated by some subset, & HTLAZEZE ring theory FIFRHES L
WH R,
RIBETREEBELEDY, HFHEH, croupftiFiFhy group, BT EEFE gen-
earte FEZIE? EEMEREIMGEREBEUER T, MR E R R M8
— 8, [EEERRERBEENER B G NARE, RMESTH—E over 7E field
F HJ vector space(MEZEM) V BIEHE, HMAGEHKER basis(EE), EKH
Hh—@ifEe, AR V #HER vector Z2EEHZK, KIS V #HERA vector
ZECATLAA basis BER vector fEEMHERFR, B—EFEE, RMERE
linear transformation(¥REEEHL) T K, TfIRERE basis 7£ T Z TH image
Ui, ZEU, FAFIHEETH group homomorphism 6 K, FMTHREREEM group
i) generator £ 6 THY image BLiF. MAEEMENE, A G’ ZH S P generate #J,
ISR G AEFEEER RMAERH S RN tEEEELEHE
iF T, B S #EMNITTERE G’ B generator, ATLA T HRYERE T, B AZEH
rlylzy e S BEEREANE, EUPIEHREN o c G BEZEME,

Prove that G’ is normal in G.

Proof. Denote z~'y~lzy by [x,y]. Then

g~y teyg™

= gz g gy g grg gyg™!

= (gz7'g )9y g ) (gzg ") (gyg™)
(9zg™) " (gyg ") (gzg™" ) (gyg™)
l9rg™ !, 9yg™ 1 e Sc G’

glz,ylg™

M. Denote x~ly~lay by [x,y]. Show that [gxg~!, gyg~] = g[z,y]g~".
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(b) Prove that G/G’ is abelian.

Proof. For any g1G’, goG" € G|G', since g7 g5 9192 € G, we have g1 g51g192G" =
G' and ¢19:G" = g2g1G" and

901G 32G' = 192G = G201 G’ = g2G" - 1 G

|
iR, Note that g7'g5'9192G" = G'.
(c) If G/N is abelian, prove that G' < N.
Proof. If G/N is abelian, then for any z,y € G,
(@N)(yN) = (yN)(xN)
= xyN =yxN
= gz lylayN=N
= zlylaye N
= G'<N.
[ |
.
(N)(yN) = (yN)(xN)
= 0ON =yxzN
= oy lzyN=N
= zloayeN
= G'<N.
7. HEXRE G 2B G/o =2 abelian B/ normal subgroup.
(d) Prove that if H is a subgroup of G and G’ < H, then H is normal in G.
Proof. For any he H and g € G,
ghg™ = () (R g ) (hD)h=[g7 i ]he H.
|

B,
ghg™ =g )W) (g )W Dh=[g",h ' ]heH.
7. IR G BEEFT, IR E—E subgroup H 18 G’ &HEMHE, AL

normals

9.64* Suppose that a group G has a subgroup of order n. Prove that the intersection of
all subgroups of G of order n is a normal subgroup of G.
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Proof. If H is a subgroup of order n, we show that gHg™!' is also a subgroup of
order n.

e € gHg ' is clearly because e = geg™. If gh1g~', ghog™' € gHg ', then

(gh197")(ghag™) = ghihog™ € gHg™!

and

(ghig™") " =ghi'gegHg™".
Thus, gHg! is a subgroup of G. Define a mapping f: H - gHg™! by f(h) = ghg™.
Then f is onto and one-to-one. Therefore, H and gH g~! have the same cardinality
(the number of element).

Furthermore, if gH,g™' = gHyg7 ', then Hy, = g-'gH g7 g = g"'gHs9 'g = H,. Thus,
for any g € G, if {H; | i € I} is the set of all subgroup of G whose order is n, then
{gH;g7" |i €I} is also the set of all subgroup of G whose order is n. It follows that

(N H= (1 gHg".

|H|=n |H|=n

For any = € Ng-n H and g € G,

grgte N gHg™ = M H.

|H|=n |H|=n
That iS, ﬂ|H|an <aG. |
R,
e Show that if H is a subgroup of order n, then gHg ! is also a subgroup of
order n.
e For any g € G, show that if gH1g7' = gHyg™', then H; = g-'gH1g7'g =
9 'gHzg7lg = Hs.

e Thus, for any g € G, if {H; | i€ I} is the set of all subgroup of G whose order
is n, then {gH;g7' | i € I} is also the set of all subgroup of G whose order is n.

e Show that

(N H= () gHg™".

|H|=n |H|=n
9.65 If G is non-Abelian, show that Aut(G) is not cyclic.

Proof.

If Aut(G) is cyclic

= inn(G) < Aut(G) is also cyclic
Theorfm 9.4

= G/Z(G) = inn(G) is cylic
Theorem 9.3

= G is abelian
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9.66

9.68

Let |G| = p™m, where p is prime and ged (p,m) = 1. Suppose that H is a normal
subgroup of G of order p". If K is a subgroup of G of order p*, show that K ¢ H.

Proof. [73iE—] It follows immediately from Exercise 9.61.
[733E]
H<G

= HK <G
prpt |H|- K|

= MoK Ik = |[HK]| divides |G| = p"m
pk
= o™
ged (p,m)=1
= |Hn K| =p"
HnNnK<K
= HnK=K
= K<H.

Bl Exercise 24.56 tL#— T,

[737E=] Consider the canonical homomorphism 6 : G - G/H. That is, 6(¢) = gH.
For any [ € K,

Lagrange’s Theorem
0()| = lH|  divides  |G/H]| = m.
On the other hand,

[e(l)}ll‘:e(ﬂ”):g(e):e Lagrange’j Theorem
0(1)]  divides  |I] and || divides |K]|=p".
Therefore, |6(1)| = 1 because ged (m, p) = ged (m, p*) = 1. It follows that 0(1) = eq/u
and K Ckerf=H.
[737AM] Tt follows immediately from Sylow 1st and 2nd Theorems. [ ]

A subgroup N of a group G is called characteristic if (N) = N for all automor-
phisms ¢ of G. If N is a characteristic subgroup of G, show that N is a normal
subgroup of G.

Proof. For any g € G, consider the inner automorphism o, : G - G defined by
o4(a) = gag™t. Then 0,(N) =N = gNg~t. Which implies that N <« G. [ |

. For any ¢ € G, define 0, : G - G by o4(a) = gag™. Show that o, is an
automorphism.

7. RIRIREsE characteristic subgroup FIEIEE, —M2RE H < N <« G 1:1%7F imply
H <« G, {Re B —{E R FINg?

FrLUGE BB R S E AR, K normal BF “EBM”, :E{E characteristic
subgroup FLEBMEMN, e

characteristic

H ¢ NaG=H<G.
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9.73

9.74*

HEE—T, BIKIZE Exercise 9.59, A B EH,

!
H<N<G=H«adG.
BE L, —@ cyclic group B subgroup #& characteristic f,

Prove that A5 cannot have a normal subgroup of order 2.

Proof. You ought to know that a group of order 2 must be generated by an ele-
ment of order 2. The element in As must be of the form (123),(12)(34), (12345).
Among these elements, the element of the type (12)(34) is the element of order 2.
Thus, a normal subgroup of order 2 in A; must be of the form ((12)(34)). But
(123)(12)(34)(123)~1 = (14)(23) ¢ ((12)(34)), a contradiction. u

Em. A group of order 2 must be generated by an element of order 2. The element
in A5 must be of the form (123),(12)(34),(12345). Among these elements, the
element of the type (12)(34) is the element of order 2. But (123)(12)(34)(123)7! ¢

((12)(34)).

Let GG be a finite group and let H be an odd-order subgroup of G of index 2. Show
that the product of all the elements of G (taken in any order) cannot belong to H.

Proof. Since [G: H] =2, we have |G| is even. Consider the set S ={geG|g?=e}.
Recall that |z| = |z7Y|. If g € G and |g| > 3, then g # g7 and g ¢ S and g7! ¢ S.
Hence, |G - S| is even and |S| is even. Thus, |S - {e}| is odd and there are odd
number of element of order 2 in G.

Since [G: H] =2, by Exercise 9.9, we have H < G and |G/H| =2. Thus, G/H is an
abelian group. That is, (¢H)(yH) = (yH)(zH) in G/H.

Let 7 be the product of all the elements of G. Note that if y € G and |y| > 3, then
y+y ! and

Ho - (ng)H

geG

= [1(gH)

geG

G/H is abelian
: ( I1 (gH>)<yH><y-1H>

geG—{y,y~1}

= $1$2"'$2s+1H7

where x1, 29, ..., T95,1 are all the elements of order 2 in G.

Since [G : H] = 2, there are exactly two left cosets H and goH for some gy ¢ H.
Since |H| is odd, by Lagrange’s Theorem, 1, s, ..., To5;1 all are not in H. Then
v H+H, xoH+H, ..., 291 H +# H and v1H =29H =+ = 295,1 H = goH.

Therefore,

2s+1 2s+1
= (H xi)H: [1 (z:H) =2 H = ((21)*) a1 H = e*v, H =2, H # H.
=1

i=1

That is, m ¢ H. [
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R,
e Show that there are odd number of element of order 2 in G. (|G| is even and
] = [27))
e Show that G/H is an abelian group.
e Let m be the product of all the elements of G. Show that

TH = 21290251 H,

where x1, s, ..., X251 are all the elements of order 2 in G.
e Show that x1, 2, ..., 29,1 all are not in H.
e Show that x1H =xoH =+ = 19,1 H.
e Then
2s+1 2s+1
wH = (H xi)H =[] (e;H) =27""H =21H # H.
i=1 i=1

That is, 7 ¢ H.

9.77% Let G be a group and H a subgroup of G of index 2. Show that H contains every
element of G of odd order.

Proof. Since [G : H] = 2, by Exercise 9.9, we have H <« G and G/H % Z,. That
is, any element in G/H except the identity is of order 2. Hence, for all g € G,
g’H = (gH)?=H. That is, g> € H.

If |a| =2s + 1, then e = a?**! = (a?)*-a and a = (a®)™* € H. u
&3, Note that for any gH € G/H, we have (¢gH)? = H. That is, g> € H.

If |a| =2s + 1, then e = a?*! = (a?)*-a and a = (a®)* € H.

9.78 A proper subgroup H of a group G is called maximal if there is no subgroup K
such that H ¢ K c G (that is, there is no subgroup K properly contained between
H and G). Show that Z(G) is never a maximal subgroup of a group G.

Proof. [J3i&—]

If Z(G) is a maximal subgroup of G
Correspondence Theorem for Groups
X G/Z(G) has no nontrivial proper subgroups
VgeG/Z(G), (9)<G/Z(G)
5 G/Z(G) = (a), for arbitrary a + e
= G|Z(G) 2 Z,, where n =|G/Z(G)|

G/Z(G) has no nontrivial proper subgroups and
by Fundamental Theorem of Finite Cyclic Groups

X G|Z(G) =7,
Theorem 9.3
= G is abelian
= G = Z(G), a contradiction
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[7537&£] If G is abelian, then Z(G) = G and Z(G) is not maximal. (Note that a
maximal subgroup is a proper subgroup.)

If G is not abelian,

G is not abelian

39¢ Z(G)

g¢Z(G) and C(g) + G
geC(G)+ Z(G)and C(g) + G
Z(G)cC(g)cG

Z(@) is not maximal.

by

7. HEEER G/Z Theorem HIFH o

7t 9.A Let H be a normal subgroup of G. If H and G/H are abelian, must G be abelian?

#7 9.B

Thm.9.3*

Proof. A counterexample is D3 = {(a,b) | |a] = 3,]b| = 2,ab = ba™'}. (a) is a cyclic
(abelian) normal subgroup of D3 because [Ds: (a)] = 2. In addition, D3/({a) = Zs is

also abelian. But Ds is not abliean. [
B, Ds.
Let G be a group of order p™ where p is prime. Prove that the center of G cannot

have order p»1.

Proof. 1t |Z(G)| = p™!, then |G/Z(G)| = p. By Lagrange’s Theorem, G/Z(G) is a
cyclic group. By Theorem 9.3, G is abelian and Z(G) = G and p"! = |Z(G)| = |G| =
p", a contradiction. [

#@7. By Theorem 9.3.
G/Z(G) cyclic = G abelian
Proof. Suppose that G/Z(G) is cyclic and G/Z(G) = (9Z(G)). For all a,b € G,

since all the left cosets ¢°Z(G) is a partition of G, where ¢ € Z, we have a € g™ Z(G)
and b € ¢g"Z(G) for some m,n € Z. Suppose that a = g™z, and b = g™z, for some
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21,29 € Z(G). Then

ab = (g"2)(9"2)
= g"[z1(9"=)]

z1€Z(G)

= g"(g"=)u]
[9"(9"22)]21
[(g"9")z2]z

= [9" " z2] 21
(9" 22] 21
[(g"g™) 2]z
[

9" (9" z)]x

29¢Z(G)
L (9" (229™)]21
= [(¢"=)g" ]
= (9"=)(g"x)
= ba.

thm.9.6 Assume both H and K are normal subgroups of G with H n K = 1. Prove that
hk = kh for all he H and ke K.

Proof. For any he H, ke K,

K<G
hkh 'k = (hkh" )k € K

and
HFG
hkh k™! :h(kh‘lk‘l) € H.

Thus, hkh 'k~ e Hn K = {e} and hkh 'k~! = e and hk = kh. n
exa.9.7 Let H be a subgroup of G and fix some element g € G.
(a) Prove that gHg™! is a subgroup of G and that |gHg | = |H]|.

Proof. Since H is a subgroup of GG, we have e € H and e = geg~' € gHg™!

Since H is a subgroup of G, for any hy, hy € H, we have hihy € H and hy' € H.
Then for any ghi1g7', ghog™' € gHg™',

(gh197")(ghag™") = ghihag™ € gHg™!

and
(ghig™) ' =ghi'g ' egHg™

Consider the mapping f: H —» gHg ! defined by f(h) = ghg™'. Then f is a
bijection. In fact, f is the inner automorphism o, of G restricted to H. [
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10.8

10.10

10.12

10.24

(b) Deduce that if n € Z* and H is the unique subgroup of G of order n then
H<«G.

Proof. Recall that gHg™! is also a subgroup of G whose order is also n. By
the uniqueness, H = gHg™! for all g € G. Which means that H is normal in
G. |

10 Chapter 10

Let G be a group of permutations. For each ¢ in G, define

sen(o) = +1 if o is an even permutation,
& | -1 if ¢ is an odd permutation.

Prove that sgn is a homomorphism from G to the multiplicative group {+1,-1}.
What is the kernel? Why does this homomorphism allow you to conclude that A,
is a normal subgroup of 5, of index 27

Proof. 1f 0,7 € GG both are even or odd permutation, then o7 is an even permutation
and

1 = san(o7) = 1-1=sgn(o)sgn(r), if o and 7 both are even;
~ SenloT) = (-1)-(-1) =sgn(o)sgn(7), if o and 7 both are odd.

If one of ¢ and 7 is even and another one is odd, then o7 is an odd permutation
and -1 =sgn(o7) =(-1)-1=1-(-1) = sgn(o)sgn(7). u

Let G be a subgroup of some dihedral group. For each x in GG, define

6(z) = +1 if x is a rotation,
| -1 if z is a reflection.

Prove that ¢ is a homomorphism from G to the multiplicative group {+1,-1}. What
is the kernel? Why does this prove Exercise 25 of Chapter 37

Suppose that k is a divisor of n. Prove that Z,/(k) = Zj.
Proof. By First Isomorphism Theorem. [ ]

Suppose that ¢ : Zsg - Z15 is a group homomorphism with ¢(7) = 6.
(a) Determine ¢(x).

(b)

(c) Determine the kernel of ¢.

(d) Determine ¢~!(3). That is, determine the set of all element that map to 3.

Determine the image of ¢.
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Proof. Observe that 7-7=49 = -1 € Zso. So ¢(-1) = p(49) = ¢(7-7) =7¢(7) =7-6 =
42 =12 € Zys. Thus, ¢(1) = ¢(~1-~1) = —1-¢(~1) = —1-12 = ~12 = 3 € Zy5. Hence,
¢(x) = ¢(x-1) = x¢(1) = 3.

Im(¢) = (3).

kerop = {xe€Zs|d(x)=3x=0¢Z5}
= {xe€Zs|15]| 3z}
= {IL’EZ50|5|I’}
= (5).

¢ 1(3) = {x€Zs|d(x)=30=3€Z5}

{r€Zs | 15| (32 -3)}
= {$€Z50|5|([L’—1)}
1+(5).

Proof. Bf#: Since Zso = (7). ¢(c-7) =cp(7) =c-6.

Im(¢) = {d(c-7)|c-TeZs}
{c-6|ceZ}

(6).

ker ¢

{c-TeZsy| Pp(c-T)=0}
= {c-TeZs|15](c-6)}
= {c-TeZs|5]|(c-2)}

ged (5,2)=1

Ly

(T)=Zs50

'7€Z50|5|C}

(@)

Il

{C € Z50 | 5 ’ C}

= (5).
We use a lemma to find ¢=1(3): if f: G - G’ is a group homomorphism and
H =ker f, then «H = Hx = f~}(f(x)) for any = € G'.
¢ (3) =97 (18) =971 (3:6) =7 (3- (7)) =07 (#(3-7)) =3 T+ ker ¢ = 21 + (5).
|

f7e. LHEXR ¢1(3) FrAK lemma LB tricky B9, FrLMIBES ¢-1(3) HELR,
BWIFEFEES, LHIY lemma B5—EEARZ, 8 the kernel of a group homomor-
phism is normal.

#&E homomorphism ¢ : Z,,, = Z,, ¢(s) =t. R Z,, = (s), Bl Im(¢) = (t). WREXK
ker ¢, RIISE3KH (1),
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10.25*

10.27

10.41

How many homomorphisms are there from Z5y onto Z1¢? How many are there to
Z10?

Proof. To determine a homomorphism, it is sufficient to determine the image (1)
of 1 € Zoy because 1 is a generator of Zyg.

If ¢ is an onto homomorphism from Zsy to Zig, then (1) must be a generator
of Z1p. Thus, ¢(1) € {1,3,7,9} because 1,3,7 and 9 are all the generators of Za.
Thus, there are 4 onto homomorphisms from Zsy to Zp.

If ¢ is a homomorphism from Zsg to Zyg, then ¢(1) € Z;o and there are 10 possibil-
ities of ¢(1). |
R, 4, 10.

To determine a homomorphism ¢ from Zsyg to Zig, it is sufficient to determine the
image p(1) of 1 € Zyy because 1 is a generator of Za.

If ¢ is an onto homomorphism from Zsyy to Zjg, then ¢(1) must be a generator of
Zlo.

If ¢ is a homomorphism from Zsy to Zjo, then ¢(1) € Zyy.

Determine all homomorphisms from Z,, to itself.
Proof. For each k € Z,, 6,(1) = k is a homomorphism from Z,, to Z,. n
(Second Isomorphism Theorem) If K is a subgroup of G and N is a normal subgroup

of G, prove that K /(K n N) is isomorphic to KN/N.
Proof. Define a mapping f: KN - K/(KnN) by f(kn) =k(K nN). Then

f((kiny) (kanz))

f(kikoky 'ny (k31) ' ng)
= f(kikoky 'y (k') 'no)
N<G, kylng(kgl) len
< f(k1k?2n3n2)
= k1ko(N N K)
= ki(NnK)-ky(NnK)
= f(kina) - f(kanz).
That is, f is a homomorphism. For any k(K n N) € K/(K n N), there exists

k-1 e KN such that f(kl) = k(KnN). That is, f is onto. We show that the kernel
of fis N.

ker f {kne KN | f(kn) = ex/kan}
{kne KN | k(KA N)=KnN)}
{kne KN |ke KnN}

= {kne KN |keN}

N.

N
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10.42

10.43

10.44

10.45*

On the other hand, if n € N, then f(n)=f(1-n)=1(KnN)=KnN and n € ker f
and N c ker f. Thus, ker f = N. Finally, by the First Isomorphism Theorem,

f is onto

KN/N=KN/ker f =Imf % K/(KnN).
|

B, Define f: KN - K/KnN by.... Show that f is an onto homomorphism with
kernel N. Then by the First Isomorphism Theorem.

e, EEIEMEERR p.150, thm. 7. 289/ B,

(Third Isomorphism Theorem) If M and N are normal subgroups of G and N < M,
prove that (G/N)/(M/N)=z=G/M.

Let ¢(d) denote the Euler phi function of d (see page 85). Show that the number
of homomorphisms from Z,, to Zy is Y. ¢(d), where the sum runs over all common
divisors d of n and k. [It follows from number theory that this sum is actually

ged (n, k).

Let K be a divisor of n. Consider the homomorphism from U(n) to U(k) given
by x - x mod k. What is the relationship between this homomorphism and the
subgroup Ug(n) of U(n)?

Determine all homomorphic images of Dy (up to isomorphism).

Proof. If ¢ is a homomorphism from G; to another group G, then by The First
Isomorphism Theorem, p(G1) 2 G/ ker ¢. Recall that ker ¢ is a normal subgroup of
(1. On the other hand, for any normal subgroup N of Gy, there is a homomorphism
¢ whose kernel is N. In fact, it is ¢ : G; = G1/N defined by ¢(g) = gN.

Since [Dy : (a)] = 2, (a) is a normal subgroup of order 4 in D,. There is a homo-
morphism ¢ with kernel (a). In this case, D4/ ker p = Zs.

If H is another normal subgroup of D4 which is of order 4 and ¢ is a homomophism
with kernel H, then we still have D4/ ker ¢ = Zsy because there is only one group of
order 2 (up to isomorphism).

There is only one normal subgroup of order 2 in Dy, it is Z(Dy4) = (a?). (One

cyclic cyclic

cau apply the Theorem “K < H <« G = K < G” on (a?) <(a)< D, to get that

(a?) @ D4.) Suppose that ¢ is a homomorphism from D, to another group and

ker ¢ = (a?). Then in the factor group D,/(a?) = {{a?), a{a?),b(a?),ba{a?)},
(a{a?))? = (b(a?))? = (ba{a®))* = (a?).

ThUS, (,D(D4) - D4/<CL2> ~ o @ Zg.

If kerp = Dy, that is, the homomorphism ¢ assign every element of D, to the
identity, then p(Dy4) = Dy/kerp = Dy/Dy = {e}.

If ker p = {e}, that is, the homomorphism ¢ is one-to-one, then ¢(Dy) = D,/ ker p =
D4/{€} = D4. [}
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R,
e If ¢ is a homomorphism from D, to another group G, then show that ker ¢ is
a normal subgroup of Dj.
e By The First Isomorphism Theorem, ¢(Dy) =

e For any normal subgroup N of Dy, show that the mapping ¢ : Dy - Dy/N
defined by ¢(g) = gV is a homomorphism.

e For any normal subgroup N of D4, what is the kenel of the homomorphism
@ : Dy — Dy/N defined by p(g) = gN.

e For any normal subgroup N of Dy, there is a homomorphism from D, to
another group whose kernel is N.

e (a) is a normal subgroup of order 4 in D,. There is a homomorphism ¢ with
kernel (a). In this case, D,/ ker ¢ =

e If H is another subgroup of order 4 in D, and ¢ is a homomophism with kernel
H, then we still have D,/ ker ¢ = because there is only one group of
order 2 (up to isomorphism).

e Show that Z(D,) = (a?).

e Show that (a?) < Dj.

e Show that there is only one normal subgroup of order 2 in Dj.
e Show that Dy/(a?) 2 Zo & Zs.

e There is a homomorphism ¢ from D, to another group whose kernel is (a?).
By The First Isomorphism Theore, o(Dy) = D,/ ker ¢ =

e You should consider the cases ker ¢ = D, and ker ¢ = {e}.

10.46 Let G be a finite group and let H be a normal subgroup of GG. Prove that the order
of the element gH in G/H must divide the order of ¢g in G.

Proof. (gH)W! = glvlH = eH = H implies that |gH| divide |g|. n

#Fe. B, AR |g| < o H 0 B—1fE homomorphism, #HEFIH (0(g)| B
FEE(HERRLZ T, B R URE (i 2 B — 85

glo

Correspondence *
Theorem 10.51

Let N be a normal subgroup of a group G. Prove that every subgroup of G/N has
the form H/N, where H is a subgroup of G.

Proof. Suppose that S is a subgroup of G/N. Let H = {he G | hN € S}. We claim
that H is a subgroup of G.

Since S is a subgroup of G/N, we have 1N € S. It follows that 1 € H. If hy,hy € H,
then hiN,hoN € S and (hyN)(haN) = (hihy)N € S because that S is closed under
its operation. Thus, hihy € H. Note that h!N = (hyN)™! € S because S is a
subgroup of G/N. Therefore, hi' € H and H is a subgroup of G. S = H/N follows
immediately from the definition of H. [ ]

R/, If S is a subgroup of G/N, then show that H = {h € G | hN € S} is a subgroup
of G and S=H/N.
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10.59*

7. EAEEN correspondence theorem, EXIEIT G IR G/N R IERM R Z
EEE, G/N R G k2R (BfEE) 19, EEEHE ] AR BERME&S T G/N
RER G HE Ao

IR exe 9.51 th&— T,

Suppose that H and K are distinct subgroups of G of index 2. Prove that H n K
is a normal subgroup of G of index 4 and that G/(H n K) is not cyclic.

Proof. f K = HK, then H < K. Hence,

2
/_'/\%

H<K <(G.

o {IA

By Exercise 7.33, we get [K : H] =1 and H = K, a contradiction. Thus, HK # K
and [HK : K] # 1. Then we have

2
—_—

K <HK<G.
I

By Exercise 7.33 again, we have [G: HK]=1and G = HK.

Since [G: K] =2, we have K < G. By Exercise 1041, [H: Hn K] =[HK : K].
Therefore,

[G:HnK]
HNK<H<G, Exercise 7.33
= [G:H]-[H: Hn K]
= [G:H] - [HK : K]
K<HK<G, Exercise 7.33
Y [G: K]
= G:Hl————
[ ] [G:HK]
[G:HK]=1
L [G:H]-[G:K]=4.
Finally,
|G/H|=2=|G/K]|

VgeG,(gH)?=H e G/H and (gK)?*=K ¢ G/K
g*e¢ H and ¢ ¢ K

G?eHNnK

[g(HnK)]?=¢*(HnK)=HnK

G/(Hn K) 2 Zy & Zsy and it is not cyclic.

A AR

B, e If K=HK, then H < K. We have
2

H<K <G.

w{In

By Exercise 7.33, and H = , a contradiction. Thus, HK + K.



10.61

e Then ,

—_—
K <HK<G.
ey
By Exercise 7.33 again, we have G = and [G: HK] =
e By Exercise 1041, [H: Hn K] = . Therefore,
[G:HnK]
HNK<H<G, Exercise 7.33
= (G:H]-_
= [G:H] - [HK : K]
K<HK<G, Exercise 7.33
s K]
= G:Hl————
[ ] [G: HK]
[G:HK]=1
i (G:H]- =4.
e Finally,
G/H|=2=|G/K]
= VgeG, (gH)?=H eG/H and
= ¢?¢ H and
= ¢?cHnK
= [g(HﬁK)]Q:g2(HﬂK) =HnK
= G/(HnK)=

= G/H n K is not cyclic.
7. THEIN—EEE, Bk, HMFE—ME Lemma,

Lemmalf] In a group G, show that the intersection of a left coset of H < G and a
left coset of K < G is either empty or a left coset of H n K.

By this Lemma, we show that Hn K, (g1 H)n K, Hn (g.K),(g1H) n (g2 K) all are
distinct and nonempty. Then H n K, (¢1H) n K, H n (g2K),(g1H) n (g2 K) are all
the cosets of Hn K and [G: Hn K] =4.

Prove that every group of order 77 is cyclic. (Hint: the proof is similar to the one
for the group of order 35)

Proof. By Lagrange’s Theorem, for any e # g € G, |g| € {7,11,77}. If there is an
element g € G, |g| = 77, then G = (g) is a cyclic group. Thus, we suppose that for
any e # g € G, |g| # 77.

If for all nonidentity element g in G, |g| = 7, then G is consists of 6k elements of
order 7 and the identity e. But |G| = 77 is not of the form 6k + 1. Hence, there is
at least an element a of order 11. Let H = (a). By a similar argument, there is an
element b which is of order 7.

We claim that H is the only one subgroup of order 11 in G. If K is another subgroup

of G whose order is 11, then |HK| = mgu[lg‘l =121 > |G|, which is impossible.

2Qrillet’s Abstract Algebra
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Recall that for any g € G, gHg™! is also a subgroup of G with order |H|. By the
uniqueness of H, gHg™' = H for all g € G. It follows that H < G and N(H) =G.

In addition, H is of order 11, so H is a cyclic group and is abelian. Thus, H <
C(H) <G and

11
—_——

H<C(H)<G.
Therefore, [C'(H) : H] divide 11.

If [C(H): H] =11, then [G : C(H)] =1 and C(H) = G. Thus, ba = ab and
(a)n(b) = {e} and |ab| = 1.c.m.(|al,|b]) = 77, a contradiction.

If [C(H):H]=1, then C(H) = H and

INCH)| _ 1G] _

But N(H)/C(H) is isomorphic to a subgroup of Aut H = Aut Z; 2 U(7), which is
impossible because 7 = |N(H)/C(H)| does not divide 6 = |U(7)|.

7. HEEE N/C theorem (p.217, exa.15) IR G/Z(G) 2 inn G (p.194, thm.9.4) [
EHEA T ER KR,

Corflfﬁgg’r‘;fgnce Let G be a group and N <« GG. If H is a subgroup of G which contains N, then
H/N ={hN | h e H} is a subgroup of G/N. On the other hand, for any subgroup
H of G/N, there exists H < G such that N < H and H/N =H.

.
G/N

H HIN

Correspondencesk
Theorem

Let N be a normal subgroup of G and let H be a subgroup of G. If N is a subgroup
of H, prove that H/N is a normal subgroup of G/N if and only if H is a normal
subgroup of G.

Proof. (<) Suppose that H is a normal group of G. Note that
G/N={gN|geG} and H/N={hN |heH}.

Since 1 € H < G, we have 1N € H/N. Note that 1N is the identity of the factor
group G/N.

If th, th € H/N, where hl,hg € H, then hlhg e H and (th)(th) = (hlhg)N €
H/N. That is, H/N is closed under its operation.
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7T 10.A

If hN € H/N, where h € H, then h™' € H and (hN)™' = h"'!N € H/N. Therefore,
H/N is a subgroup of G/N.

For any hN € H/N and gN € G/N,
H<G, glhg_leH
gN-hN-(gN)™"' =ghg'N € H/N.
That is, H/N < G/N.

(=)IfH/N ={hN |he H} «G/N, then for all g ¢ G and h € H, the coset ghg™'N =
(gN)(hN)(g7'N) € H/N. Which implies that ghg ' N = hy N and hi'ghgt e N ¢ H
for some hy € H. Suppose that hilghg™ = hy for some hy € H. Then ghg™' = hihy €
H. Therefore, gHg' ¢ H and H < G. |

2. H/N = {hN | he H}.

7. EEEHEEEE, W Correspondence Theorem, MR N « G, EEEELE T
G B G/N ZHBk%. BEtEs, &£ G #H, 28 N B normal subgroup BB G/N
# normal subgroup BH——¥ENER, EEL, B8 N ¥ subgroup IR G/N
subgroup &——HER, M TEFTR, 2% Exercise 10.51.

G/N

H H|N

If : G - H is an isomorphism, prove that |¢(x)| = |x| for all x € G. Deduce that
any two isomorphic groups have the same number of elements of order n for each
nezr.

Proof. At first, we need to show that ¢(eg) = ey. For any h € H, since ¢ is onto,
there is an element g € G such that ¢(g) = h. Then

dec)-h=¢(ec) - d(g) = ¢p(ec-g) = ¢(g) = h.
Similarly, k- ¢(eq) = h. Thus, ¢(eq) is the identity of H and ¢(eq) = ep.

Now, we have

" =eq = (¢(2))" = ¢(a") = d(eq) = en

and
¢ one-to-one and ker ¢={eG}

2" = eg & ((x))" = p(z") = enr.
That is,
" =e < (¢(z))" =e.
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11.6

If || < |¢(x)|, then e = xl*l and (¢(z))F = e, contrary to the minimality of |¢(z)].
Thus, |z| > |¢(z)]. By a similar argument, we can get || < [¢p(z)]. Therefore,
] = [o(2)].

For any fixed n e Z*, let X, ={zx e G ||z|=n}cGand Y, ={ye H||y|=n} c H.
By the above discussion, ¢(X,,) = {¢(x) |z € X,,} €Y,,. On the other hand, for any
y €Y, since ¢ is onto, there exists an element x € G such that ¢(x) = y. Once again
by the above discussion, |x| = |¢(x)| = |y| = n. That is, x € X, and y = ¢(x) € ¢(X,,).
Therefore, ¢(X,,) =Y,. Since ¢ is one-to-one, we have | X,| = [¢(X,,)| = |Yal.

11 Chapter 11

Show that there are two abelian groups of order 108 that have exactly four subgroups
of order 3.

Proof. By the fundamental theorem of finite abelian groups, there are 6 abelian
groups of order 108. They are

To®Zo @& 1@ L3 ZLs,
Zo®Zy & 7o Zs,
Zo®Zo & Zor,

Zy & Zs3® Z3® ZLs,

Zy & Zg®7Zs,

Zy & Zoy.

A group of order 3 must be isomorphic to the cyclic group of order 3. If a group
has exactly four subgroups of order 3, then it must be has exactly 8 elements of
order 3. The group which has exactly 8 elements of order in the above list are
Lo ® Lo ® Zg® g and Zy & Zg & Zs. [ |

.

Show that a group of order 3 must be isomorphic to the cyclic group of order

3.

Show that if a group has exactly four subgroups of order 3, then it must be
has exactly 8 elements of order 3.

In Z4 & Zg & Zs3, the four subgroups of order 3 are

((0,0,1)) = {(0,0,0),(0,0,1),(0,0,2)},
((0,3,0)) = {(0,0,0),(0,3,0),(0,6,0)},
((0,3,1)) = {(0,0,0),(0,3,1),(0,6,2)},
((0,3,2)) = {(0,0,0),(0,3,2),(0,6,1)}.

The answer is Zo @ Ziy & Zig ® 73 and Zy & Zg & 3.
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11.10 Find all abelian groups (up to isomorphism) of order 1800.

Proof. 1800 = 23 -32-52.

Lo @ Zlio @ Lo ® Lz ®Lis®Lis ®Ls | Lo @ Ly @iz ® Lz ® Ly @ L | g ® L3 ® L3 @ Lis, @ Ui,
Lo ® Ly ® oo ® 13 ® Loz ® Lios, Lo ® Ly ® L3 ® L3 ® Zios Zg ® 1.3 ® Lz ® Zios,
Lo ® Ly @ Lo ® Log ® Zis ® L Lo ® Loy ® Zig ® Lo ® Zos Ly ® g & L5 ® Zs

Lio ® Lig @ Lo ® ZLug ® Lo, Lo ® 7y & Lig ® Zigs Zig ® Lig & Zios
|

11.11 Prove that every finite Abelian group can be expressed as the (external) direct
product of cyclic groups of orders ny, ns, ..., n;, where n;,1 divides n; forv =1,2, ..., t—

1.

Proof. By the Fundamental Theorem of Finite Abelian Groups, write

Gz Zp71"11 ) Zp?z ®- D Zp:ul @Zp;m ® Zpgm ®- D Zp;232 eameaZp:ﬂ ® Zptrm ®- D Zp:tst ,

where r;; <701y for 1<i<tand 1<j<s,—1. We can rewrite G as

G

IR

(Zp;u @ Zp;m DD Zp:tl)

D (szw @ Zp;n DD Zp:tQ)

@

® (Z T1sq @ZTQSQ @"'@Z"‘tst).
Py Py Dy

Then set

ni

N2

Uz

711,721 Tt1

pl p2 " ‘pt )
712,722 Tt2

Py Py Pr s
T1s1 T2s9 Ttsy

pl p2 e .

11.22*% Suppose that G is a finite abelian group that has exactly one subgroup for each
divisor of |G|. Show that G is cyclic.

Proof. By The Fundamental Theorem of Finite Abelian Groups, we can write G as

Gz ZPII @Zpgz oD - @Zpgs,

where p1,ps,...,ps are prime but not necessarily all distinct and ry,79,...,7 are

positive integers.

If p; = p; for some 7 # j, then

Zp:i ® Zp;j = Zp:z @ Zp:j ~H<G.

In this case, there are two distnct subgroups of order p; generated by (p;'i_l, 0) and
(0, p;"i_l) in Z,: & pr]-, respectively. So is H and G, a contradiction. Therefore,
P1, P2, .., Ps all are distinct and G is cyclic.
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#Em. By The Fundamental Theorem of Finite Abelian Groups, we can write G as

Gz Zp71'1 @Zpgz - @Zp;'s,

where p1,ps,...,ps are prime but not necessarily all distinct and ry,79,...,7 are
positive integers. If p; = p; for some ¢ # j, then

In this case, show that there are two distnct subgroups of order p; in Z, @ prj

Zp:i ® Zp;j = Zp:i ® Zp:j ~H<G.

k3

11.23 Characterize those integers n such that the only Abelian groups of order n are

cyclic.

Proof. Let G be a finite abelian group of order n = p}'py*---ps*, where py, pa, ..., ps are
distinct primes. If r; > 2 for some i € {1,2, ..., s}, then by the Fundamental Theorem
of Finite Abelian Groups, G maybe isomorphic to Zp? ® Zp;2 ©- @ Ly @ Zp:ﬂ ®
++ @ Zyrs. Which is not cyclic by p.166, Corollay 2. Thus, ry =73 = =r,=1. By
the Fundamental Theorem of Finite Abelian Groups and p.166, Corollay 2 again,
G2l @ Lipy @@Ly, = Lipypyp, 15 a cyclic.

11.29 Suppose that G is an abelian group of order 9. What is the maximum number
of elements (excluding the identity) of which one needs to compute the order to
determine the isomorphism class of G?7 What if G has order 187 What about 167

Proof. The answer is 3, 6 and 12.

BEE-TEENER. XM |G| = 16 £, BENEREHR, HMF LE—MHE abelian
group G, BMBFTREE G B order /2 16, Fundamental Theorem of Finite Abelian
Groups HREM, G BHEEE,

ZQ@ZQ@ZQ@ZQ,

Lo @® Lo ® Ly,
Zo ® Zsg,
Ly ® 1y,

L.

BT LFER EHE G HEZEITER order, RE G FIEIRYEFHH—1E abelian
group & isomorphic ., HERMEETAE G #ENE—ETEN order AFTETSY

Retk EMERME—{E abelian group 72 isomorphic, RIS, FFIHRE TR,

d\G Lo ®Lig @ Lo ®Lig | Lo ® Lig DLy | Lig ® Ly | Lo ® ZLig | Zn
16 0 0 0 0 8
8 0 0 0 8 4
4 0 8 12 4 2
2 16 7 3 3 1
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EERES A T HE abelian group #H, orderf d BITTRIVEE. AT, BFE
BEH—E—EI G FRTE, AN identity, AR EFEMEITEREL order, EMIE, HIN
1 AT, EHEMTERN order 216, B ITLIEE G 2 Z; WRBINT 9 A
&, i 5 HTREH order 72 4, Bt 4 (HITHREW order #2 2, HREER T LAAIE
G 2Ly ®ZLo® Ly; WRBAZF] 2 {8 order 2 2 KTTHE, 5 order & 4 HTTHR, HEE
Z:ﬁléﬁ%% G, ﬁRﬁE%ﬂiﬁ G2Zs®7y —EX% G279 ® 7o ® Lo

B FHEE R T vk, TR REI 12 ARt E G FIEREW—E abelian 2
isomorphic B, TEEHIUEZIME] 8 1 order & 4 YT K 3 fE order % 2 HITTR,
E{ﬁ1§&ﬁﬂﬁﬂ£{%ui\é Ga2G2Zs®7y ﬁ% G2Zy®7Zy® Z4, ﬂ:tﬁﬁﬁ:%%'—‘{ﬁ
Lt ae R E TR —{E abelian group 5 isomorphice

Gl =9
d\G Zs ® 13 | Zg
9 0 6
3 8 2
Gl =18
d\G L3 ® L3 ® Lo | Zg ® Zio
18 0 6
9 0 6
6 8 2
3 8 2
2 1 1

RR. BEBE-TEEWER, U |G| = 16 B4, EENERER, RMAFLE—HE
abelian group G, ZEMBFIRAE G B order & 16, Fundamental Theorem of Finite
Abelian Groups &3k, G B HEA]HE,

Lo ® Lo ® Lo ® 7o,
Lo ® Ly ® Ly,
Zo ® Zs,
Ly ® Ly,

Zag.

B LIFER EHE G HER2EITTER order, KRE G FERYIEHHIH—(E abelian
group s isomorphic #J, HERMEERHIL ¢ EENE—ETEN order HEFHETF
FERE MR —1E abelian group f& isomorphic, REW, FHf2KE T &,

d\G Lio® Lo ®lin® gy | Lig®lig @y | Ly ® Ly | Lo ® Zg ZIG
16 0 0 0 0 8
8 0 0 0 8 4
4 0 8 12 4 2
2 16 7 3 3 1
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EERES A T HE abelian group #H, orderf d BITTRIVEE. AT, BFE
E#i—E—EIN G HRTTE, S identity, R EEEMEITERN order, EUWIE, FIN
1 ExkE, BEHEEMETER order 216, A AT LMEE G = Zig; WMRFLINT 9 H
JLE, Heb 5 ATTER order #2 4, Bt 4 (AITER order #Z 2, BREIEL AT LIAIE
G 274 @ Zy; MEBINE 2 order & 2 HITTE, 5 1 order & 4 HTTE, HERETHE
Eﬁ% G, &RﬁE%UiE G2G2Z,07,y —Ey% G227y ®Zo® Zoo

B FHEE R T vk, TR REI 12 ARt E G FIEREW—E abelian 2
isomorphic B, TEEFEREEIMNE 8 M order £ 4 FITEK 3 il order £ 2 KT,
EERHRERFIERI LARIE G2 G 27 0 Zy B G 2 7y @ Ly & Ly, RFHEZI—ET
Lt ae R E TR —{E abelian group 5 isomorphice

11.36 Suppose that G is a finite Abelian group. Prove that G has order p”, where p is
prime, if and only if the order of every element of GG is a power of p.

Proof. (=) It follows immediately from Lagrange’s Theorem.

(<) If p #+ ¢ divides |G, since G is a finite abelian, by the Fundamental Theorem of
Finite Abelian Group, there exists a subgroup H of G such that Z; ® Zy» @ --- &
Zg = H < G. Hence, there is an element of order ¢ in Zgr @ Zgs @ -+ ® Zgri, S0 is
in GG, contrary to the hypothesis. [ ]

7. BE L, 5/ abelian & @G A&, i § Cauchy Theorem B, order
prime p power FJ group #£ p-groups

12 Chapter 12

12.7 Show that the three properties listed in Exercise 6 are valid for Z,, where p is prime.
Proof. Because Z, is a finite field, so Z, is also an integral domain. [ ]

12.9 Prove that the intersection of any collection of subrings of a ring R is a subring of
R.

12.12 Let a,b, and ¢ be elements of a commutative ring, and suppose that a is a unit.
Prove that b divides ¢ if and only if ab divide c.

Proof. Let R be a commutative ring and a,b,c € R.

blc

= c¢=bq for some g€ R
R is commutative

c=1-bg=(a'ta)bq L ab(a™'q)

ab | c.

Y

Y

12.13 describe all the subrings of the ring of integers.
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12.14

12.15

12.16

12.19

12.22

12.23

Proof. Note that Z is a cyclic group under addition. Recall that a subgroup group
of a cyclic group must be also a cyclic group. Thus, a subgroup of (Z, +) is of the
form (m) ={n-m |neZ}. It is easy to verify that (m) = mZ is also a subring of
Z. [ ]

Let a and b belong to a ring R and let m be an integer. Prove that m - (ab) =
(m-a)b=a(m-b).

Show that if m and n are integers and a and b are elements from a ring, then
(m-a)(n-b) = (mn)- (ab).

Show that if n is an integer and a is an element from a ring, then n-(-a) = —(n-a).

Proof. Show that n-a+n-(-a) = 0. Then by the uniqueness of the additive
inverse. [ ]

Let R be a ring. The center of R is the set {x € R | ax = za for all a in R}. Prove
that the center of a ring is a subring.

Let R be a commutative ring with unity and let U(R) denote the set of units of R.
Prove that U(R) is a group under the multiplication of R. (This group is called
the group of units of R.)

Determine U(Z[i]).
RBR. |a+bi]=a®+ 2%

Proof. Let |a + bi| = a® + b?> be the norm of the complex number. Suppose that
a+bi,c+dieZ[i] and (a+bi)(c+di)=1. Then

1=1|=|(a+bi)(c+di)|=|a+bi||c+di| = (a®+b*)(c +d?).
Since a,be€Z, we get a+bie{1,-1,i,—i}. [ |

7. THEREAERINEE,
Suppose that a + bi, ¢+ di € Z[i] and

(a+bi)(c+di) = (ac—bd)+ (ad + bc)i = 1.

Then

ad+bc=0 (15)

If a =0, then —bd = 1 and be = 0. It follows that ¢ =0 and d = -b and b e {1,-1}.
That is, (c+di) =—-(a+bi) and a+ bi € {i,—i}.

If b=0, then ac =1 and ad = 0. Tt follows that d =0 and ¢ =a € {1,-1}. That is,
c+di=a+bie{l,-1}.

The cases ¢ =0 and d = 0 are similar.

Suppose that a,b,c and d are all nonzero. Solve the equations .

{ac—bdzl

acd-bd?=d
acd+bc? =0
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We get bd? +d +bc? = 0 and d = 2=V 1407 V;g‘“’w. Since d € Z, the discriminant 1 — 4b%c?

must be 0 or 1. If 1 -4b%c? = 0, then be = 1, a contradiction. If 1 -4b%c? = 1, then

b=0 or ¢ =0, contrary to the assumption.

12.24 1f Ry, Ry, ..., R,, are commutative rings with unity, show that U(R;®@ Ry®-+® R,,) =
UR)eU(Ry)®-—adU(R,).

Proof. () 1f (ry,re,...,7) is a unit of Rj®Ry®---®R,,, then there exists (s1, S, ..., Sn) €

R, @RQ@"'@Rn) such that (7’1,T2, ...,T‘n) . (81782, -~-73n) = (1R17 1R27 e 1Rn) Thus,

si=r;tand r; e U(R;) for alli=1,2,...,n. [ |
12.25 Determine U(Z[x]).

Proof. +1. [ |

12.26 Determine U(R[z]).

Proof. UR[z]) = {f(x) =7 e R[z] | » # 0 € R}. [Hint: If f(x)g(z) = 1, then
0=degl=degf(x)+degg(x). [ |

12.27 Show that a unit of a ring divides every element of the ring.

Proof. Let u be a unit in a ring R. Then for any r € R, r = 1-7r = (uu™)r =
u(utr). [

12.31 Give an example of ring elements a and b with the properties that ab = 0 but ba # 0.

e R R R R R R '

12.35 Find an integer n > 1 such that a™ = a for all a in Zg. Do the same for Zqy. Show
that no such n exists for Z,, when m is divisible by the square of some prime.

Proof. BiZH/NIBIF, BELZE p = 2m = 223, Z1p = {0,1,2,3,4,....11}, FEEEH]
27 # 2 for all r € N*, FrRARRMIRIEHIEHE]: 2R m =p?-s, Al pe Z,,, p~ + p for all
re N+, EEERAHECHRBEEE.

If m=p?-sand pe€Z, and p" = p for some n € Z, then p" = p € Z,, and p" = p
(mod m = p?s). Therefore, p?s | p» —p and ps | (p*'—=1) and p | (p*! -1), a
contradiction. ]

12.36 Let m and n be positive integers and let k be the least common multiple of m and
n. Show that mZ nnZ = kZ.

12.37 Explain why every subgroup of Z, under addition is also a subring of Z,.

12.38 Is Zg a subring of Z57

Proof. No. But there is a subring (2) of Z;5 isomorphic to Zs. [ |
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12.40

12.41

12.45

12.47

12.48

Let My(Z) be the ring of all 2 x 2 matrices over the integers and let

a a+b
R )

Prove or disprove that R is a subring of My(Z).

Let Ms(7Z) be the ring of all 2 x 2 matrices over the integers and let

a a-b
Rz{(a—b b )|a,beZ}.

Prove or disprove that R is a subring of Ms(Z).

Proof. Additive Identity:

Additive and Multiplicative Closed: For (a‘ib “gb),( ‘ ng) € R,

(a2 ")+ (o a) = (atita“hig) = ( (a+cC)Li—?b+d) (a%Z;((iber) )eR
and
(agb aib) : (cfd C?id) = ( 2ac%+bd ac—bacc—_abdd+2bd) €R.
Additive Inverse: For (aﬁb “gb) € R,
(% %") = (% P) e R
Therefore, R is a subring of My(Z). |

Let R be a ring with unity 1. Show that S ={n-1|neZ} is a subring of R.

Determine the smallest subring of Q that contains 1/2. (That is, find the subring
S with the property that S contains 1/2 and, if 7" is any subring containing 1/2,
then T' contains S.)

Proof. NifEE—T, AR S & Q #&F 1/2 B9&/) subring, HERE S 2
subring, FTLAE IEEEA, INEKICER, AT 1/2+1/2 = 1€ S, 58—, Z c S, I
#, AR S BIREEREA, FiL 1/2-1/2=1/4€ S,

HE L,
ny (%) Nng
S = A:{—+—+~-+—|nieZ,seN+}.
1/204g@ 2 22 2°
S HyR/MERL R G IR BR n
Determine the smallest subring of Q that contains 2/3.

Proof. Al Exercise 12.47, n
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12.52

13.4

13.5

13.7*

If a,b, and c are elements of a ring, does the equation ax + b = ¢ always have a
solution z? If it does, must the solution be unique? Answer the same questions
given that a is a unit.

Proof. No. No. Yes. Yes.
In Zg, 22 +1 = 2 has no solution. 2x + 3 = 3 has two solutions.

If @ is a unit, then = = a1 (c-10). |

13 Chapter 13

List all zero-divisors in Zy. Can you see a relationship between the zero-divisors
of Zog and the units of Zyy?

Proof.

ged (a,20) =1

there exists x,y such that ax + 20y =1
ar—1=-20y

ar=1 (mod 20)

CLIZ].EZQO

OB

< @18 a unit

If a +# 0 € Zy and ged (a,20) = d # 1, suppose that a = ds and 20 = dt for some
s,t € Z, then at = (ds)t = (dt)s = 20s = 0 € Zgy. Since d # 1, we have 20 + t and
t +0 € Zgy. Thuse, a is a zero-divisor in Zsyy.

The unit in Zyy are 1,3,7,9,11,13,17,19.
The zero-divisor in Zsyy are 2,4,5,6,8,10,12,14,15,16, 18.

Note that 0 is neither unit nor zero-divisor. ]

f7e. zero-divisorfR unit £ multiplication table & & /R 4:?
EEZR, g HEIITRERXZE unit XZ zero-divisor?

Show that every nonzero element of Z, is a unit or a zero-divisor.
&, In general, if R is a finite commutative ring with unity, then every nonzero
element in R is a unit or a zero-divisor.

Let R ={ry,rs,...,m,} be a finite commutative ring with unity. If 0 # a € R is not a
zero-divisor, show that aR = {ary,ars, ...,ar,} = R.

7. EEEEENLIER, MEE commutative & ERY, TN BFHRES T,

Let R be a finite commutative ring with unity. Prove that every nonzero element of
R is either a zero-divisor or a unit. What happens if we drop the “finite” condition
on R?
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. i hint BEER—T, BELEBLEETE, If u # 0 is not a zero divisor, then
show that uR = {ur |re€ R} = R. Hence, 1 € R=uR and 1 = ur for some r € R.

13.9 Find elements a, b, and c in the ring Z®Z®7Z such that ab, ac, and bc are zero-divisors
but abc is not a zero-divisor.

Proof. a=(0,0,1),b=(0,1,0),c=(0,0,1). [
13.10 Describe all zero-divisors and units of Z & Q @ Z.

Proof. The set of all zero-divisor of Ze&QeZ are {(a,b,c) | a,b and ¢ at least one is 0 and not all 0
UZoQeZ)={(x1,r,£1) |0+ reQ}. u

13.11 * Let d be an integer. Prove that Z[\/d] = {a+b\V/d | a,b € Z} is an integral domain.
fare. (ML HEEEH, EEREBEN A, 2FHEE: a subring of a field which

contains the unity is an integral domain.
13.12 In Z7, give a reasonable interpretation for the expressions 1/2, -2/3, /-3, and -1/6.
Proof. 4, 4, 2, 1. [ |

13.15 Let a belong to a ring R with unity and suppose that a™ = 0 for some positive integer
n. (Such an element is called nilpotent.) Prove that 1-a has a multiplicative inverse
in R. [Hint: Consider (1-a)(1+a+a?+--+a™1)]

13.17 Show that 0 is the only nilpotent element in an integral domain.

13.18 A ring element «a is called an idempotent if a? = a. Prove that the only idempotents
in an integral domain are 0 and 1.

13.20 Show that Z, has a nonzero nilpotent element if and only if n is divisible by the
square of some prime.

1B, B Exercise 12.35, —IRGEIE Z1o, 12 = 22 - 3, BIZF| Z,, 1B —1# nonzero
nilpotent element 6, TEE 6 [1FE 2 -3, FTUATRMAEHEH, IFE n = p? - s, FE

ps € Z,, x=—{Enonzero nilpotent element.

Proof. (<) Suppose that n =p?-s. Then (ps)? = (p?s)-s=0¢€Z,.

(=) We prove that by contradiction. Suppose that n = p1ps---ps, where p1,pa, ..., ps
are distinct prime. If 0 # a € Z,, and a” = 0, then pypo---ps =n | a” and p1py-ps =n | a
and a =0, a contradiction. [

13.26 Find all units, zero-divisors, idempotents, and nilpotent elements in Z3 & Zg.

Proof. BT,

nilEEFREBENER, FIIE TBEE K&Z-BUEM (Shark O'Nil), HEZ (Shaquille
O’Neal), potentig [EFERAER, AT nilpotent FLRFER A ZHEIHE (B 0)

HITCHR.
M idem BHEEHER, ATl idempotent EERAFZEGEREH CHIITTE. m
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13.29 (Subfield Test) Let F' be a field and let K be a subsetof F' with at least two elements.
Prove that K is a subfield of F' if, for any a,b (b#0) in K, a—0b and ab~! belong to
K.

Proof. &8, groupf@HRY group ¥t/& subgroup, ringfEH ring Hti2 subring, 1M
field #HHEIRY field B2 subfield, fRAIE, fieldBERMER 12 M,

for any a,b,ce F + .
closed a+belF a-belF
associative (a+b)+c=a+(b+c) (a-b)-c=a-(b-c)
identity d0eFst. a+0=0+a=a dleFst.a-1=1-a=a
inverse I(-a)e Fst. —a+a=a+(-a)=0| Va#0,3JateFst. a-al=ata=1
commutative a+b=b+a a-b=b-a
left distribution a-(b+c)=a-b+a-c
right distribution (a+b)-c=a-c+b-c

FrABH S —1E field B subset, TMBEAEEE subset &€ subfield, Bfimt2zHl
FAEME subset BB MR —(E field, FrLAREEEHEE subset KERFEIE 12 B (T
—EEE CH—ERM, R G RERMLEFRAT AR, RS ER AR
LA,

FEEET, (FEE OB ERAR RERE a-be K, ab™! € K BUF, BN REM
AR S T A 12 (EFRM n

13.30 Let d be a positive integer. Prove that Q[v/d] = {a +bV/d | a,beQ} is a field.

Proof. 0 € Q[v/d] is obviously. If a +b\/d, ¢ + ex/d € Q[/d], then

a+c,b+ecQ

(a+bVd)+(c+eVd) = (a+c)+ (b+e)Vd ¢ Q[Vd]

and
—a,-beQ
|

(a+ V) = (<) + (VA ¢ Q]
Thus, Q[v/d] is a subring of R.

If a2 - b2d = 0, then V/d = 2€Q and Q[Vd] = Q is a field. Thus, we suppose that
a2 -b2d #0. If a +b\/d # 0, then

1 a-b/d a-b/d a -b
- = - VdeQ[Vd].
a+b/d (a+b/d)(a-b/d) a®>-bd it gV AVl
Therefore, a+bv/d # 0 has a multiplicative inverse in Q[v/d] and Q[V/d] is a field. m
. BB EEIHMGE, If Vd e Q, then Q(Vd) = Q is a field. If Vd ¢ Q,

then 22 - d is always irreducible over Q. It follows that (22 — d) is a maximal ideal

in Q[z] and Q(V/d) = Q[x]/(z2 - d) is a field.

13.33 Formulate the appropriate definition of a subdomain (that is, a “sub” integral
domain). Let D be an integral domain with unity 1. Show tat P ={n-1|neZ}
(that is all integral multiples of 1) is a subdomain of D. Show that P is contained
in every subdomain of D. What can we say about the order of P?
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13.34

13.35

13.36*

13.38*

Proof. Show that P is a subring of D. If n-1,m-1€ P and (n-1)-(m-1) =0, then
nm-1=0. But the characteristic of Z is 0. Hence, nm = 0. Since n,m € Z and Z is
an integral domain, it follows that m =0 or n=0. That is (n-1) =0 or (m-1) =0
and P is an integral domain. [

Prove that there is no integral domain with exacty six elements. Can your argument
be adapted to show that there is no integral doman with exactly four elements?
What about 15 elements? Use these observations to guess a general result about
the number of elements in a finite integral domain.

Proof. BAZE| Exercise 13.51, %6F& Exercise 13.51,

The number of elements of a finite field must be a power of a prime. Since a finite
integral domain must be a finite field, we have that the number of elements of a
finite integral must be a power of a prime. [ ]

Let F be a field of order 2. Prove that char F' = 2.

#&m. Show that char F' divide 2" and by theorem: The characteristic of a field is
a prime.

Proof. Since (F,+) is an additive abelian group, by Lagrange’s Theorem, |F|-1 = 0.
Thus, the additive order of 1 divide |F|=2". That is, the characteristic of F' divide
2", The characteristic of a field is a prime. Hence, char F' = 2. [

Determine all elements of an integral domain that are their own inverses under
multiplication.

Proof. Let D be an integral domain. If @ € D and a = a™!, then a? = aa™! = 1 and
a?-1=0. Thus, (a-1)(a+1)=0. Since D is an integral domain, it follows that
(a-=1)=0or (a+1)=0. That is, a € {1,-1}. On the other hand, the multiplicative
inverse of 1 and —1 are themselves, The only possible are 1 and —1. [

Determine all integers n > 1 for which (n—1)!is a zero-divisor in Z,,.

Proof. Since Z,, is a commutative ring with unity, by Exercise 13.7, every nonzero
element of R is either a zero-divisor or a unit. Thus, (n—1)! is a zero-divisor in Z,
if and only if (n—1)! is not a unit and (n—1)! # 0 € Z,.

(n-1)!is not a unit
(n=-1)!s+1€Z, forall seZ
(n-1)s-1%#0€Z, for all seZ
n+(n-1)ls-1forall seZ
(n=1)ls=1%ngqfor all s,qeZ
(n-1)!s—ng+1forall s,qgeZ
ged((n-1),n) #1

n is not a prime.

R N 2
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13.41
13.45*

13.47*

13.48

13.49

(n-1)+0¢€Z,
< nt(n-1)!
< nis a prime or n =4.
(If n=stand 1 <s#t<n, thenn=st|(n-1)!
If n = p? for some prime p and p > 2, then p,2p < p?> -1 and n=p* | (p* - 1)!).

Therefore, only when n =4, (n-1)! is a zero-divisor in Z,. u

If a is an idempotent in a commutative ring, show that 1—a is also an idempotent.

Show that a finite commutative ring with no zero-divisors and at least two elements
has a unity.

Proof. $EI Exercise 13.7,
Let 0 # 7 € R. Suppose that R = {ry,r,...,7,,}. If rr; = rr;, then r(r; —r;) =0 and
ri =rj. Thus, rR = {rry,rre,...,rr,} = R.

R is commutative

Since r € R = rR, there exists s € R such that r =rs L sr. We show that s
is the unity.

For all t € R =rR, write t = ru. Then

R is commutative

ts L st =s(ru) = (sr)u

z'r

ru =t.
That is, s is the unity. [ ]

Suppose that R is a commutative ring without zero-divisors. Show that all the
nonzero elements of R have the same additive order.

Proof. Let a and b are two nonzero elements in R. If n is a positive integer such
that na =0, then 0 = (na)b = (nb)a. Since R has no zero-divisor and a # 0, we have
nb = 0. Therefore, all the nonzero elements in R have the same additive order. =

Suppose that R is a commutative ring without zero-divisors. Show that the char-
acteristic of R is 0 or prime.

Proof. 1f char R = n, then we show that n is a prime.

Since char R =n, there exists an element 0 # a € R such that na =0 and ma # 0 for
1<m<n. If n=stand 1< s,t<n, then 0 =na? = (st)a? = (sa)(ta). Since R has
no zero-divisor, we have sa = 0 or ta = 0, both cases contrary to the minimality of
n. Thus, n is a prime.

FEREENERAT, SR TUHREREH integral domain #J characteristic & prime,
unity i 8 G2 % BRIV, n

Let x and y belong to a commutative ring R with prime characteristic p.

(a) Show that (z +y)P = 2P + yP.
. If p is a prime, then p | (7;) fori=1,2,....,p—-1.
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13.51%*

13.53

13.54

13.56

13.57

7. EEEHEBEEE, ZBEL field theory B FHEE,
(b) Show that, for all positive integers n, (z +y)P" = 2P" + y?".
(c¢) Find elements z and y in a ring of characteristic 4 such that (z +y)* # 2* + y*.

B, Zy.
Proof. x =1,y =4¢€Zy. |

Show that any finite field has order p®, where p is a prime. [Hint: Use facts about
finite Abelian groups.|

Proof. Let F be a finite field. Define a mapping 6 : Z — F by 8(m) = m-1. Show that
6 is an one-to-one homomorphism. Suppose that char F' = p. Then ker6 = pZ. By
the First Isomorphism Theorem for Ring, we have Z, 2 Z/pZ = Z]ker 6 = Imf < F.
That is, F' contains a subfield Z, (up to isomorphism). Let F' be a vector space
over its subfield Z,. The scalar multiplication is the same as the multiplication
in F'. Suppose that dimz, F' = n and {vy,vs,...,v,} is a basis for 5 F. Then F' =
{101+ Agvg + -+ Ao | A1,y Ag, oo, Ay € Z, ) and | F| = p because there are p choices
for each \;. [

Let R be a ring and let My(R) be the ring of 2 x 2 matrices with entries from R.
Explain why these two rings have the same characteristic.

Let R be a ring with m elements. Show that the characteristic of R divides m.

Proof. Recall that (R, +) is a group. If the characteristic of R is n, then there exists
an elememt r € R whose additive order is n. By Lagrange’s Theorem, the order
of an element must divide the order of the group. Thus, char R = n = |r| divide
|R| =m. u

Find all solutions of 22 — x + 2 = 0 over Zs[i].
R Zg[l] = {CL + bi | a, be Zg}

Proof. Suppose that a + b7 is a solution of 22 -z + 2 = 0, where a,b € Z3. Then
(a+bi)?—(a+bi)+2=0 and

a?-0>-a+2=0
2ab-b=0

If b=0, then a? —a+2=0. But there are no element in Zs satisfying a®> —a +2 = 0.
Thus, b # 0. Multiplying b= to the equation 2ab-b = 0. We get a = 2. Substitute
toa=2toa?-b>-a+2=0, we get be {1,2}. Therefore, the solutions of x? — x + 2
in Zs[i] are 2+ and 2 + 2i. |

Consider the equation 2 —5x + 6 = 0.

(a) How many solutions does this equation have in Z;7
(b) Find all solutions of this equation in Zs.

(c) Find all solutions of this equation in Zis.
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(d)

Find all solutions of this equation in Z4.

Proof.

(a)

Observe that 2 -5z +6 = (z - 2)(z — 3). Note that Z; is a field and an
integral domain. That is, if ab = 0 € Z7, then a = 0 or b = 0. Therefore, if
22-5x+6=(r-2)(x-3)=0, then (x-2)=0o0r (z-3)=0. That is, z =2 or
x = 3.

m7e. RABERR.

Observe that 22 —5x +6 = (x — 2)(z — 3). The set of all zero divisor in Zg is
{2,4,6}. There are three factorizations of 0 with nonzero factor. They are

2.4,
44,
4-6.

There are no x satisfying (x = 2)(x —=3) =4-2 or (x-2)(x-3) =4-4 or
(x=2)(x-3)=6-4. Therefore, 22 -5z +6 = (z - 2)(z —3) = 0 has only two
solutions 2,3 in Zg.

Observe that z2 - 5z +6 = (z — 2)(x — 3). The set of all zero divisor in Zis
is {2,3,4,6,8,9,10}. There are nine factorizations of 0 with nonzero factor.
They are

D @R R W W N
0 DO Do D

6-10,
8-9.

Note that 22 -5x+6=(x-2)(z-3) = ((z-3)+1)(z-3). Thus, if ((x-3) +
(x-3)=0and ((x-3)+1)#0 and (x-3) #0, then

((r-3)+1)=4and (r-3)=3and =6

or
((z-3)+1)=9 and (x-3)=8 and x = 11.
Therefore, 2 — 5x + 6 = (x - 2)(z — 3) = 0 has four solutions 6,11,2,3 in Zis.

Observe that 22 - 52 + 6 = (v — 2)(z - 3). The set of all zero divisor in Zy,
is {2,4,6,7,8,10,12}. There are nine factorizations of 0 with nonzero factor.
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13.59

13.60

13.61

They are

7.2,
7.4,
7.6,
7.7,
7.8,
7-10,
7-12.

Note that 22 -5z +6 = (z-2)(z-3) = ((x-3) +1)(z - 3). Thus, if ((x-3) +
1)(x-3)=0and ((z-3)+1)#0 and (x-3) #0, then

((x-3)+1)=7Tand (x-3)=6and =9

or
((r-3)+1)=8and (x-3) =7 and x = 10.
Therefore, 22 — 5z + 6 = (x — 2)(x — 3) = 0 has four solutions 9, 10,2, 3 in Z1,.

Suppose that R is an integral domain in which 20-1=0 and 12-1=0. (Recall that
n-1 means the sum 1+ 1+ -+ 1 with n terms.) What is the characteristic of R?

Proof. Recall that the characteristic of an integral domain must be a prime. If
20-1=0and 12-1 =0, then char R |20 and char R |12. Thus, char R = 2. u

In a commutative ring of characteristic 2, prove that the idempotents form a subring.

Proof. Let S be the set of all idempotent in R and a,be S. 0 € S is obviously.

R is commutative char R=2

(a+b)*=a®+ab+ba+b? L a®+2ab+b® £ a2+ =a+b.

Thus, (a +b) is also an idempotent.
char R=2
(-a)?=a>=a % -a, (-a) is also an idempotent.
R is commutative

(ab)? = abab 2 a’b? = ab, ab is also an idempotent. ]
Describe the smallest subfield of the field of real numbers that contains /2. (That

is, describe the subfield K with the property that K contains v/2 and if F is any
subfield containing v/2, then F contains K.)

BR. Q(V2) = {a+b0/2]|a,beQ)}.

Proof. Q(v/2) = {a+bv/2|a,beQ}. Verify directly. u
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13.62

13.64*

13.65

7. THREES—RNESE, (BT — g A FIE—T7E Exercise 13.51
I, BAVE T B HERR.

Let F' be a subfield of R. Define a mapping 6 : Z — F' by §(m) = m-1. Show that 0 is
an one-to-one homomorphism. Since F' <R, we have char F' =0. Then kerf = {0}.
By the First Isomorphism Theorem for Ring, we have Z = Z/{0} = Z/ ker § = Im(0) <
F. That is, F' contains an integral domain Z (up to isomorphism).

The field of quotient of Z is Q and the field of quotient of Z is the smallest field
which contains Z. Thus, Q < F'.

If /2 € F and F is the smallest subfield of R which contains \/5, then F' = @(\/5)

Let F' be a finite field with n elements. Prove that 27! =1 for all nonzero z in F.
Proof. F -{0} is a group under multiplication. By Lagrange’s Theorem. |
Suppose that a and b belong to a field of order 8 and that a? + ab + b? = 0. Prove

that ¢ =0 and b = 0. Do the same when the field has order 2 with n odd.
.
e Show that a3 = b3.

e By Exercise 13.35, char F' =7

e Show that 3 4 27 -1 for any odd integer n. (Hint: Suppose that n =2k+1 and
compute 2" =7 (mod 3).)

e If ¢ # 0, then consider the multiplicative order of a~'b in the multiplicative
group F'—{0}.

Proof. By Exercise 13.35, char F' = 2. Note that a® — b3 = (a - b)(a? + ab+ b?) = 0.
Hence, a3 = b3.

If a # 0, then (a7'b)? = 1 and the multiplicative order of a~!b in the multiplicative
group F' - {0} is 1 because 3 + |F - {0}| = 2" - 1 for any odd integer n. Hence,
a'b=1and a = b, Then

charlF:2
0O=a’+ab+0*=3a> = a°

and a =0, a contradiction. Therefore, a = 0. [

Let F be a field of characteristic 2 with more than two elements. Show that (z+y)3
x3 +y3 for some z and y in F.

127, Observe that

(z+y)d=a3+y3
char F=2

A

<  zy(z+y)=0.

That is, (z +y)3 # 23 +® < . Since |F| > 2, let z,y € F satisfying
x#0,y+0and z #y. Show that zy(x +vy) # 0.
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Proof. Observe that

(z+y)* =a®+y°
charlF:Q
S i ratyryt =2ty

<  zy(z+y)=0.

Since |F| > 2, let x,y € F satisfying x # 0,y # 0 and x # y. Then z+y # 0 (if z+y =0,

char F'=2

thenw=-y ) and ay(o+y) =0 and (v+9)* + 2% + . .

13.66* Suppose that F' is a field with characteristic not 2, and that the non-zero elements
of F' form a cyclic group under multiplication. Prove that F' is finite.

Proof. Suppose that F'—{0} = {a,a?,a3,...}. Since there is a multiplicative identity
1in F - {0}, we have a™ =1 for some m € N*. Thus, F' ={0,a,a?,a?,...,a™ '} and
F is finite. [ |

7. MR RE char F = 2 5E{E#EH, £EF—T http://math.stackexchange.
com/questions/753437/ & http://math.stackexchange.com/questions/856975/

13.68% Let F' be a field of order 32. Show that the only subfields of F' are F itself and
{0,1}.

Proof. F' — {0} is an abelian group under multiplication. If S is a subfield of F
then S—{0} is a subgroup of F'—{0} under multiplication. By Lagrange’s Theorem,
|S—{0}| divide |F'={0}| = 31. Thus, |S-{0}| =1 or |S-{0}| =31. That is, S ={0,1}
or S=F. ]

14 Chapter 14

i
-

14.15, 14.17, 14.27

I Theorem 14.3, Theorem 14.4 /& p.274 line 11: In a commutative ring with unity,
a maximal ideal is also a prime ideal. WBBEBERRIW=ZREE, KM EZG T E
MM, 585250 TR,

14.4 Find a subring of Z @ Z that is not an ideal of Z @ Z.

Proof. {(m,m)|meZ}<Ze&Z. u

14.5 Let S ={a+bi|a,beZ,bis even}. Show that S is a subring of Z[i], but not an
ideal of Z[1].

14.6 Fina all maimal ideals in

(a) Zg.
(b) ZIO-
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(C) Zlg.
(d) Z.

Proof. {RRILA%EHR (Z,,+) BI subgroup, 8 ANTELIER T, BEE, #2 cyclic group
#J subgroup, &EH} subgroup lattice diagram, i EFEFEELE subgroup & Z ideals
HAHUERERT, 558 maximal ideal, MEF] A ring B =K EHEFH,

(a) (2).
(b) (2), (5).
(c) (2), (3).
)

(d) Suppose that n = pi'p?---ps*. Then all the maxiaml ideal of Z,, are (p1), (p2),...,

S

(ps) because Z,, is a commutative ring with unity and Z,/(p;) = Z,, is a field.
(You can construct a ring homomorphism from Z,, to Z,, and show that whose
kernel is (p;). Then by the First Isomorphism Theorem for Ring.)

14.8 Prove that the intersection of any set of ideals of a ring is an ideal.

14.10 If A and B are ideals of a ring, show that the sum of A and B, A+ B={a+b|a¢€
A,be B}, is an ideal.

14.11 In the ring of integers, find a positive integer a such that
(a) (a)=(2)+(3)

= (6) +(8)

(c) {a) = (m)+(n).

Proof. (m) + (n) = (ged (m,n)). |

)+
)+

14.12 If A and B are ideals of a ring, show that the product of A and B, AB = {a1b; +
aghy + -+ ayb, | a; € A b; € B,n a positive integer}, is an ideal.

wWF. BB o NREERW, I a1by + asbs € AB, asbs + asby + asbs € AB.

14.13 Find a positive integer a such that

(a) (a) = (3){4).
(b) (a) = (6)(8).
(¢) {a) = (m)(n)
Proof. {(m){n) = (mn). u

. EE, T= (m)(n) = (Lem.(m,n)), GBI (6)(8) = (48) # (24) = (l.c.m.(6,8)).
R, AB = (T, asbi | n e NU {0}, a; € A, by € BY, (T, g n ARRERR,) T
& AB={ablac Abe B}.

14.14 Let A and B be ideals of a ring. Prove that AB < An B.
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14.15

14.16

14.17

14.18

14.20

14.22

Proof. 1f abe AB, then ab € A because A < R. [ ]

If Ais an ideal of a ring R and 1 belongs to A, prove that A = R.

7. EEMIFFEE, MERH, MURHREEE ideal & unity B2 unit, fRELE
EELEM ideal —EMZEM ring, M LMREEMA multiplication table ZR##
BE (EE

Consider the multiplication table of R.

1 ) T3
r|Trry | rro | TTs

1 T T9 T3

If I is an ideal in R and r € I, then rry,rry, rrs, ... all are contained in I. Thus, if
1el, then ry,79,73,..., all the elements in R are contained in [ and I = R.

If A and B are ideals of a commutative ring R with unity and A+ B = R, show that
AnB=AB.

IR, (c) Since 1€ R=A+ B, let 1 =ag+bg, where ag € A,by € B. If x € An B, then

x=x-1=x(ag+by) = xag+xby = apx + xby € AB.

If an ideal I of a ring R contains a unit, show that I = R.

Suppose that in the ring Z, the ideal (35) is a proper ideal of J and J is a proper
ideal of I. What are the possibilities for J? What are the possibilities for 1?7

Proof. J=(5)or J=(7). I =Z. u

Suppose that R is a commutative ring and |R| = 30. If I is an ideal of R and |I| = 10,
prove that [ is a maximal ideal.

Proof. f I < A< R, then (I,+) < (A,+) < (R,+) as additive group. By Lagrange’s
Theorem, |I| = 10 divide |A| and |A| divide |R| = 30. Hence, |A| = 10 or |A4| = 30.
That is, A=1 or A= R and [ is a maximal ideal.

EE, TREA=ZAEHE, RRTHEE R B%A unity. n

Let I = (2). Prove that I[z] is not a maximal ideal of Z[x] even though I is a
maximal ideal of Z.

. = KREH,

Proof. Note that Z[z] is a commutative ring with unity. Since Z[z]/I[x] = Zs[x]
is not a field, we have I[z] is not a maximal ideal in Z[z].
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Why Z[x]/I[x] 2 Zs[x]? Consider (a,x"+a, 12" +--+a1x+ag)+1[z] € Z[z]/I[z],
where a; € Z.

1

(an2™ + ap 1™+ + a1+ ag) + I[7]

((an + 1) 2" + (2051 + 71 )2+ (201 + 7)) + (20 + r0)> + I[x], where r; € {0,1}

((an.r” + 2b, 2™+ - 2by + 20g) + I[x]) + ((rnx" @+ ) + I[x])
= (O + I[m]) + ((rnx” ™ e i ) + I[x]) (202" + -+ + 2bg) € I[x]
= (rpa" + ™ e i ) + I 7]

14.24 Give an example of a commutative ring that has a maximal ideal that is not a prime
ideal.

RR. ZREH,
Proof. 47, < 277. [ |

AR, EEI=ZAREHETH “a maximal ideal must be a prime ideal” A ZEFE—1# com-
mutative ring with unity &9 ¥ &AL, FTLAE 2Z &, R B unity, AT maximal
ideal T~—EZ—f@ prime ideal,

14.26 If R is a commutative ring with unity and A is a proper ideal of R, show that R/A
is a commutative ring with unity.

14.27 Prove that the only ideals of a field F' are {0} and F itself.
fmre. FEF, EEEHEE Theorem 15.28R Theorem 15.1.7=FZ%E5E T —HEEERN

EE, B2 domain £ field B ring homomorphism —Z€ & one-to-one Y,

14.28 Show that R[z]/(x? + 1) is a field.
$&. See Theorem 17.1, Theorem 17.5, = KEH,

Proof. 2 +1 has no root in R and degz?+ 1 =2. 22+ 1 is irreducible over R. By
Theorem 17.5, (2 + 1) is a maximal ideal in R[z]. By Theorem 14.4, R[z]/{z? + 1)
is a field. [ ]

14.29 In Z[x], the ring of polynomials with integer coefficiens, let I = {f(x) € Z[x] |
f(0) =0}. Prove that I = (z).

Proof. () If f(x) = apa™ + -+ a1z +ag € I, then 0 = f(0) = ag and f(z) = a,z™ +
et ayr = x(a ™+t ag) € (x) = {zg(x) | g(x) € Z[2]}.
(2) If f(x) =xg(x) € (x), then f(0)=0-¢g(0) =0 and f(x) €. u

e, BHERHIE.

x € I is obviously. Thus, (x) € I. ((z) is the smallest ideal which contains z.) On the
other hand, suppose that f(z) = a,2”+---+a;z € I. Then f(x) = z(a,x" ' +---+ay) €
(x). Therefore, I ¢ (z) and I = (x).
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14.30

14.31

274, exa.17, 14.34

14.35

Show that A = {(3z,y) | x,y € Z} is a maximal ideal of Z ® Z. Generalize. What
happens if 3z is replaced by 42?7 Generalize.

Proof. H=REH,

Note that A 2 3Z&Z. Since Z@®Z is a commutative ring with unity and (Z®Z)/A =
(ZoZ)|(3Z & Z) = Zs is a field, we get that A is a maximal ideal in Z & Z.

pZ & Z is a maximal ideal in Z @ Z for any prime p.

(ZoZ)|(AZ&Z) = Zy4 is not an integral domain. 4Z & Z is not a maximal ideal in
AW |

Let R be the ring of continuous functions from R to R. Show that A = {f € R |
f(0) =0} is a maximal ideal of R.

BR. ZREH,

In Z[z], the ring of polynomials with integer coefficiens, let I = {f(z) € Z[z] |
f£(0) =0}. Prove that I is a prime ideal in Z[z] but not a maximal ideal in Z[z].
. = REH,

Proof. By Exercise 14.29, I = (x).

Note that

Zlz]/1
= Z[z]/(x)
= {f(z)+ ()| f(x) e Z[x]}
= {(fnxn"‘"""flx"'fo) <x>|szZ}
= {(x(fnx” o+ f1) +fo)+ )| fieZ}
)

= {(x(fnxn et f1) + IL‘)+( )|fleZ}
{(z+4@) - (farmt 4ot fr+ (@) + (fo+ (0)) | fie 2

{(04 @) (faamt et i+ 42) + (fo+ (2)) | fie 2}

{fo+(x)| foeZ}
Z.

ze(z), z+(z)=0+(x)

2%

IR

Since Z[x] is a commutative ring with unity, by p.273, thm.14.3 and Z[z]/I 2 Z is
an integral domain, [ is a prime ideal. By p.273, thm.14.4 and Z[z]/I 2 Z is not a
field, I is not a maximal ideal of Z[x].

There is another way to prove that I is not a maximal ideal by the definition.
We show that I ¢ (z,2) ¢ Z[z] and [ # (x,2) and (x,2) # Z[z]. I € (z,2) =
{zf(x) +2g9(z) | f(x),g9(x) € Z[x]} is obviously. Since 2 ¢ I, we have I # (x,2).
Since 1 ¢ (z,2), we have (z,2) # Z[z]. n

InZeZ,let I ={(a,0)]|aeZ}. Show that I is a prime ideal but not a maximal
ideal.
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14.36

14.37

14.39

B, = KEHE, p.273, Theorem 14.3, 14.4 and that in a commutative ring with
unity, a maximal ideal must be a prime ideal. (p.274)

Let R be a ring and let I be an ideal of R. Prove that the factor ring R/I is
commutative if and only if rs — sr e I for all » and s in R.

. Forall s e R,

(r+D)(s+1)=(s+I)(r+1)
rs+1=sr+1
(rs—sr)+1=1

rs—srel

)

§

8

In Z[x], let I ={f(z)eZ[z]| f(0) is an even integer}. Prove that I = (x,2). Is [ a
prime ideal of Z[z]? Is I a maximal ideal? How many elements does Z[z]/I have?

RBR. = KEH,
Proof. Z[x]]I = Z,. [
In Zs[z], let I = (x2+2+2). Find the multiplicative inverse of (22+3)+1 in Zs[z]/I.

{2 R. Method 1 (Euclidean Algorithm #E#HR%): We want to find that
s(x),t(x) € Zs[x] such that

(2r+3)-s(x) + (2> +x+2) - t(x) = 1.

Then s(x) is the multiplicative inverse of (2 + 3) in Zs[xz]/I. Applies the division
algorithm on 22 + z + 2 and 2x + 3.

3r  +1

2z + 3 ) 2 +r 42
2 +4zx

20 +2

2 +3

-1

(22+2+2)  =(2x+ S)J(J‘) (3 +1) — L

f(z) q(x

Then
“1=(2*+2+2)-(20+3) -3z +1).

Multiplying (-1) on both sides, we get
l=—(2*+2+2)+ (22 +3) -3z +1).

Therefore, (3z + 1) is the multiplicative inverse of (2x +3) in Zs[z]/I.

EBEAERMEZNMEER® T, 2% Exercise 0.4: Find integers s and t such that
1=7-s+11-t. Show that s and ¢ are not unique.
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ERRER T —EEE#NEH. Find integers s and ¢ such that 1 =695+ 31 -t.

69 = 31-247, (16)
31?7-4/3, (17)
7= 37241 (18)
by (I§), 1 = 7-3-2

17

= 7-(31-7-4)-2

= 7-31-2+7-8

7-9-31-2

BNl

(69-31-2)-9-31-2
69-9-31-18-31-2
69-9-31-20
¢ = —20.

= s=0,

Method 2 (F - {0} is a multiplicative group): Let F' = Zs[z]/I. Note that F
is a finite field® and F - {0} is a multiplicative group with order 52 -1 = 24. By
Lagrange’s Theorem, the multiplicative order of (2z + 3) is a divisor of 24.

Note that 22+ 2 +2 =0 in Zs[z]/I. Hence 2? = —x — 2 = 4z + 3 in Zs[x]/I. Then
compute that
(2x +3)* =
(2x +3)3

42+ 120 +9=4(4x+3) +120+9=282+21 =3z +1# 1
(22 +3)-(2z+3)* =22 +3)(3x+1) =35x+21 =1.

Therefore, (2z + 3)? = 3z + 1 is the multiplicative inverse of (2z + 3) in Zs[x]/I.
Method 3 (Undetermined Coefficients Method): Suppse that

(27 +3)(ax +b) = (2* + x + 2)q(x) + 1 € Zs[x]/1.

Then (ax + b) is the multiplicative inver of (2x + 3) in Zs[x]/I.

3z +1

20 +3 ) 2 4z
2 +4x

2z

2x

+2

+2
+3
-1

Therefore, (z2+2+2) = (2x+3)-(3z+1)+(-1) and (22+3)(3z+1) = (22 +x+2)+1.

14.41 An integral domain D is called a principal ideal domain if every ideal of D has the
form (a) = {ad | d € D} for some a in D. Show that Z is a principal ideal domain.

3deg (22 + x +2) € {2,3} and 22 + x + 2 has no root in Zs, by p.312, thm.17.1, 2? + x + 2 is irreducible
over Zs. By p.317, thm.17.5, I = (2? + x + 2) is a maximal ideal in Zs[z]. Since Zs[z] is a commutative

ring with unity, by p.274, thm.14.4, Zs[x]/I is a field.
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14.45

14.46

14.49

14.50

14.51

14.52

14.53

14.54

14.60

IR, See Exercise 12.13. If I <« Z, then I =mZ = (m) for some m € Z.

Let R be a commutative ring and let A be any subset of R. Show that the annihilator
of A, Ann(A) ={re R|ra=0 for all @ in A}, is an ideal.

Let R be a commutative ring and let A be any ideal of R. Show that the nil radical
of A, N(A) = {r e R|r" e A for some positive integer n (n depends on r)}, is an
ideal of R. [N((0)) is called the nil radical of R.]

Let R be a commutative ring. Show that R/N({(0)) has no nonzero nilpotent
elements.

f7e. HEZ, R EATEEHE nonzero nilpotent element, {HEFHE nilpotent element
MK, B —1E ideal N((0)), M H# R quotient #EMEH nilpotent element #&
FXH ideal, BEIFIHTH quotient ring R/N ((0)) Bii#H nonzero nilpotent element T,
FREL, BB EZRER, “quotient” & HEIE, EFIEEAREEMERITR BEHITIEE.

HERMEgroup theory FEHHEABDRIAEE T, F40 commutator subgroup G’,
7 G HEEER o b 'ab WITERBHEEERPTE, EHEM quotient # G7 FIKF
1%, BB LB o b ab TR, BE L, EEN B 2IEKHRS identity,
WHELRE a'btab = 1. (BREKE, FEZZE (a0 'ab)G' = G's) WBL—3K, BLE ab = ba,
EMERMTE G/G is abelian BIEHK.

Let A be an ideal of a commutative ring. Prove that N(N(A)) = N(A).

Let Zs[z] be the ring of all polynomials with coefficients in Zy (that is, coefficients
are 0 or 1, and addition and multiplication of coefficients are done modulo 2). Show
that Zo[x]/(2? +x + 1) is a field.

#87R. See Theorem 17.1, Theorem 17.5, = KEH,

List the elements of the field given in Exercise 51, and make an addition and
multiplication table for the field.

Show that Zs[x]/(z?+ 2z + 1) is not a field.

$87R. See Theorem 17.1, Theorem 17.5, = KEH,
Proof. x? +x + 1 has a root 1 in Zs. [ |

Let R be a commutative ring without unity, and let a € R. Describe the smallest
ideal I of R that contains a (that is, if J is any ideal that contains a, then I ¢ .J).

. (a)={ra+na|reR,neZ}.
Let R be a commutative ring with unity, and let I be a proper ideal with the

property that every element of R that is not in [ is a unit of R. Prove that [ is the
unique maximal ideal of R.

. Let I <J < R and J # I. Then there exists j € J such that j ¢ I. By the
hypothesis, j must be a ...
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14.63

p-268, exa.6

7 14.A

Proof. Let I < J < R and J # I. Then there exists j € J such that j ¢ I. By the
hypothesis, j must be a unit. Then J = R. Thus, [ is a maximal ideal in R.

If I’ is another maximal ideal has the same property. That is, if u ¢ I’, then u is a
unit. If I # I’, then there exists i’ € I’ and ¢’ ¢ I. By the hypothesis, i’ is a unit and
I' = R, contrary to the maximality of I’. (A maximal ideal is proper.) [

Let R be a commutative ring with unity and let a,b € R. Show that (a,b), the
smallest ideal of R containing a and b, is [ = {ra+ sb|r,s € R}. That is, show that
I contains a and b and that any ideal that contains a and b also contains I.

In Z[z], the ring of polynomials with integer coefficiens, let I = {f(z) € Z[z] |
f(x) has even constant term}. Prove that I = (z,2).

Proof. () If f(x) = apz™ + -+ a1z + ag € I, then f(0) = ag = 2k is an even integer
and f(x) = apa™ + -+ arx + 2k = x(a,x™t + -+ ay) + 2k € (x,2) = {xg(z) + 2h(x) |
9(x), h(x) € Z[x]}.

(2) If f(x) =xg(z)+2h(z) € (x,2), then f(0)=0-g(0)+2h(0) = 2h(0) is an even
integer and f(x) € I. u

e, BIERHIEE.

Since Z[x] is a commutative ring with unity, we have (z,2) = {zf(x) + 2¢g(z) |
f(x),9(x) € Z[z]} (c.f. p.268, exa.h).

If h(z) =xf(x) +2g(x) € (x,2), suppose that f(x) = fz™+--+ fix + fo and g(z) =

™ 4 Gy then h(2) = 2™+ Jy+ fo) + g™ -+ 412) + 29 € I
Hence, (z,2) c I.

If h(x) = hgx®+---+hix +2hg € I, then h(zx) = x(hsax*t+---+hy)+2(hg) € (x,2) and
Ic(z,2).

Find the multiplicative inverse of (2x + 1) in Zs[z]/(x? + 2z + 2).

{8 R. Method 1 (Euclidean Algorithm #E#EHR{%): We want to find that
s(x),t(x) € Z3[x] such that

(2z+1)-s(x) + (22 +22+2) - t(x) = 1.

Then s(x) is the multiplicative inverse of (2x + 1) in Zs[z]/(x? + 2x + 2). Applies
the division algorithm on 22 + 2z + 2 and 2z + 1.

2
2x+1) 22 427 +2
2 +2x

+2

2 — .
(2% + 2z + 2)/,(;[?) =2z + 1),,(,,;) (2.%)1(1) + 2,0

Then
2= (2> +2r+2)- 2z +1) (27).
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Multiplying 2 on both sides, we get
1=2(2*+2+2)-2(2z+1)-(22).

Therefore, (-2)(2x) = 2z is the multiplicative inverse of (2x+1) in Zg[z]/(z2+22+2).

Method 2 (F-{0} is a multiplicative group): Let F = Z3[z]/(x?+2x+2). Note
that F' is a finite field and F'— {0} is a multiplicative group with order 32 -1 = 8.
By Lagrange’s Theorem, the multiplicative order of (2 + 1) is a divisor of 8.

Note that 22 + 22 +2 =0 in Zs[z]/(z? + 2z + 2). Hence

2 = 2w-2=x+1,
3 _ x.x2=x(x+1):x2+x:2x+1,
zt = (@) ?=(r+1)?=22+22+1=2.
Then compute that
(2z+1)? = 4a*+4x+1=2+2+1=22+2%1

(2z +1)* (2r+2)?* =42? +8x+4 =0 +2r+1=2+%1.

Therefore, (2z+1)8 =1 and (2 +1)" = (2 +1)*- 2z + 1)?2- (22 + 1) = 2x is the
multiplicative inverse of (2x + 1) in Zs[x]/{x? + 2z + 2).

7t 14.B Find the multiplicative inverse of (2 + x + 1) in Zy[z]/(z® + = + 1).

{8 R. Method 1 (Euclidean Algorithm #E#HR%): We want to find that
s(x),t(x) € Zy[x] such that

(2+z+1)-s(x)+ (2P +x+1)-t(x)=1.

Then s(x) is the multiplicative inverse of (22 +x +1) in Zy[x]/{x®+x + 1). Applies
the division algorithm on 23 + z + 1 and 22 + z + 1.

r +1

2+r+1 ) 3 +r +1

3 42?2 4z
2 +1
22 4z +1

+T

3 2
(z° +x + 1)/,(.[‘) =(x®+x+ 1)‘1(,1,.) (x+ 1)““) + T, (19)

Again, applies the division algorithm on g(x) and ri(z).

r +1
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7 14.C

2 _
(ZL’ e 1)\1(4') - (x)"l(:z’) . (I al 1) 72(x) +L"2("")
Therefore,
_ 2
Ll‘z(.l,‘) - (x tr+ 1)!1(’1_) - ('T),,] (z) ’ (‘/E + 1) 12 (z)
= g—"gqz
(19D
= g-(f-90)e

= g-f@+90q
91+ qq2) - fgo

Therefore, 1+¢q1qo = 1+ (x+1)(z+1) = 22 is the multiplicative inverse of (z2+z+1)
in Zo[z]/(x3+x+1).

Method 2 (F'-{0} is a multiplicative group): Let F' = Zy[z]/{(x®+x+1). Note
that F' is a finite field and F - {0} is a multiplicative group with order 23 -1 = 7.
By Lagrange’s Theorem, the multiplicative order of (22 + x + 1) is a divisor of 7.
It follows that (z2+ 2z +1)" =1 and (22 + x + 1)¢ is the multiplicative inverse of
(22 +x+1) in Zo[z]/{2® +x +1).
Note that 23 +2+1=0in Zy[z]/(z* + = + 1). Hence

¥ = —r-1l=x+1,
!

v =x(z+1)=2%+u.
Then compute that

(% +1+1)? rtrrt+l=a+1
(?+x+1)* = (z+1)?*=22+1

(22 +2+1)°

(2 +x+1)?- (2 +ax+ D= (z+1)(2*+1) =23+ 2% + o+ 1 = 22

Method 3 (Undetermined Coefficients Method): Suppse that
(2 +x+ 1) (ax® +bx+1) = (2® +z+1)(dz +e) + 1 € Zp[z]/{2® + 2+ 1).

Note that ax? + bz + ¢ is the general form of the element in Zy[z]/(z3 + 2 +1). Then
(ax? + bx +¢) is the multiplicative inver of (22 +x +1) in Zy[z]/(x3+x +1). Expand
the equation and get the coefficients a,b and c.

Find the multiplicative inverse of (222 + x + 3) in Zs[z]/{x3 + 3z + 2).
#®R. We want to find that s(z),#(z) € Zs[x] such that
(222 +z+3) - s(x) + (23 + 32+ 2) - t(x) = 1.
Then s(z) is the multiplicative inverse of (222 + z + 3) in Zs[x]/(23 + 3z + 2).
v +1

202+ + 3 ) 3 +3z 42

3 +312 +4x
202 +4x 42
202 +x  +3
3z +4
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($3+3$+2) :(21,2_'_3:_1_3)()(3l‘+1)1()+(3$+4) (@) (20)
~ 7 g(z 1 (x - ri(z

/()

Again, applies the division algorithm on g(z) and ().

4x
3:c+4) 222 +x +3

212 +x

+3

2 = .
(22°+x+ 3)./“) =3z + 4)711(11) (4.1)12((]") +3 0

Therefore,

— 2 _ .
3 /‘z(if') - M{,(m) (337 - 4)"1(.1:) (4x)
g —T1q2

12(2)

B

9= (f-901)e
9-fae+901q
= g(1+qg) - fe

Multiplying 2 on both sides, we get

1=9(2+2qq2) -2fq.

Therefore, 2 +2q1qs = 2+2(3x + 1)(4x) = 422 + 3x + 2 is the multiplicative inverse of
(222 + x +3) in Zs[z]/{x® + 3z + 2).

15 Chapter 15

15.13, 15.12, 15.14, 15.44

15.11, 15.19, 15.47

15.22, 15.23, 15.42, 15.52, 15.53, 15.51
15.57, 15.58, 15.59, 15.61

Prove that the intersection of any collection of subfields of a field F' is a subfield of
F.

Let Zs[i] = {a+bi | a,b e Zs}. Show that the field Z3[i] is ring-isomorphic to the
field Zs[x]/(x? +1).

Proof. Define a mapping ¢ from Zs[z] to Zs[i] by
o(f(x)) = f(i).

It is easy to verify that ¢ is a ring homomorphism. For any a + bi € Z3[i], there
exists f(x) = a + bx € Zs[x] such that ¢(f(x)) = a+ bi. Thus, ¢ is onto.
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Since F[z] is a P.I.D. and the kernel of ¢ is an ideal of F'[x], ker ¢ = (g(z)) for some
g(x) € F[x]. Note that 22+ 1 e ker ¢ = (g(x)). We assume that z2+1 = g(x)h(z) for
some h(z) € F[x]. Since 22+1 is irreducible over Zs, we have g(x) or h(z) is a unit.
If g(z) is a unit, then ker ¢ = (g(x)) = F[z], a contradiction. (¢(1) =1+ 0) If h(x)
is a unit, then g(x) = (2 + 1)h(x)~! and (g(x)) = (2 + 1). Thus, ker ¢ = (22 + 1).

By the First Isomorphism Theorem for Ring,

Zs[x]/{x* + 1) = Zs[x]/ ker ¢ = Im¢ = Zs][i].

#®7R. Define a mapping ¢ from Zs[x]/(z? + 1) to Zs[i] by
ng((bx +a)+ (2% + 1}) =a+bi, where a,b € Zs.

We show that ¢ is a ring isomorphism.

Homomorphism:
o((bw +a) + (2% +1) + (dw + 0) + (2% + 1))

¢<[(b+d)x+(a+c)] +(x2+1))
= (a+c)+(b+d)i=(a+bi)+ (c+d)i

o( (b +a) + (2% +1)) + 6((do + ) + (> + 1)).

¢((bx+a)+(x2+1)-(dx+c)+(x2+1))
= ¢(bd:c +(ad+bc)x +ac+ (x +1)

a:2+(x2+1):—1+(x2+1)

2 ¢((ad+bc):c+(ac—bd) x +1)

= (ac—-0bd) + (ad + be)i

(a+bi)-(c+di)
¢(bx+a+(x2+1))-¢<dx+c+(x2+1>).

One-to-One and Onto: It is easy to verify. You can prove that ¢ is onto. Then
since |Zs[x]/(x? + 1)| = 9 = |Z3][¢]|, we have that ¢ is one-to-one.

L)

Show that ¢ : C - S given by

15.13 Let

is a ring isomorphism.
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15.14 Let Z[V2] = {a+bV/2 | a,beZ} and

H:{[Z ib]m,bez}.

Show that Z[+/2] and H are isomorphic as rings.
15.19 Describe the kernel of the homomorphism given in Example 3.
15.22 Determine all ring isomorphisms from Z,, to itself.

. If 0 is a ring automorphism on Z,, then (1) =...

Proof. 1f 0 is a ring automorphism on Z,, then (1) = 1. Thus, there is only one
ring automorphism on Z,. Which is the identity mapping. [ ]

15.23 Determine all ring homomorphisms from 7Z to Z.
R, 0(1)=0(1-1)=6(1)-6(1) =0(1)2. So (1) € {0,1}.
15.23 Determine all ring homomorphisms from 7Z to Z.
R, 0(1)=0(1-1)=6(1)-6(1) =0(1)2. 6(1) € {0,1}.
15.25% Determine all ring homomorphisms from Z & Z into Z & Z.

2R, 0(0,1) = 0(0,1)2, 0(1,0) = 0(1,0)2, 6(0,0) = A((0,1)(1,0)) = 6(0,1)8(1,0).

0(0,1) | (0,0) | (0,1) | (1,0) | (1,1)
6(1,0) | (1,1) | (1,0) | (0,1) | (0,0)

15.29 Determine all ring homomorphisms from Z @ Z to Z.
R,

0(0,1) | 0|1
0(1,0) [1]0

15.42 Determine all ring homomorphisms from Q to Q.

2. 0(1) = 0(1-1) = 6(1)-0(1) = 6(1)2 So 6(1) € {0,1}.

15.44 Let R be a commutative ring of prime characteristic p. Show that the Frobenius
map x — P is a ring homomorphism from R to R.

2. See Exercise 13.49.

faFe. 2F4.73 K& Lidl's Finite Field, exe.2.12, H—{EF EZEAERZ Frobenis ho-
momorphism 5 Galg, Z,» = Z,, ] generator, 2% Foote, p.585, sec.14.3,

15.47 Suppose that R and S are commutative rings with unities. Let ¢ be a ring homo-
morphism from R onto S and let A be an ideal of S.
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15.51

15.52

(a) If A is prime in S, show that ¢~1(A) ={z € R| ¢(z) € A} is prime in R.
(b) If A is maximal in S, show that ¢~1(A) is maximal in R.

. ZREH

Proof. We show that R/¢p~1(A) is a field.

f w+¢ (A) 20+ 67 (A) e Rl¢(A)

= r¢ o (A)
= ¢(x)¢A
= d(x)+Ax0+AeS/A

S/A is a field
X there exists s+ A such that (s+ A)(¢(x)+A)=1+AeS/A
= sop(x)+A=1+A
= 1-sp(x)eA

4 is onto

X p(1-rx)eA
= 1-raxedpt(A)
= (2407 (A)(rs+¢7'(A)) =1+ 67 (A).

Prove or disprove that the field of real numbers is ring-isomorphic to the field of
complex numbers.

fBR. If 0: R - C is an isomorphism and 6(r) =4, then ...
Proof. 1If §: R — C is an isomorphism and 0(r) =i, then
O(r*) =0(r)* =i*=-1=0(-1)
and r? = —1. Which is impossible. [ |

Show that the only ring automorphism of the real numbers is the identity mapping.

27K, If 0 is a ring automoprhism of R, then 6(1) =6(1-1) =60(1)-0(1) =6(1)2. So
0(1) € {0,1}.

Prove that if r > 0 € R, then 6(r) > 0. Suppose that there exists s; € R — Q such
that 0(s1) = s9 # $1.

Proof. 1f 0 is a ring automoprhism of R, then #(1) =6(1-1) =60(1)-6(1) =6(1)2. So
0(1) € {0,1}. But since #(0) = 0 and @ is one-to-one, we have (1) # 0 and 0(1) = 1.
It follows that 6(q) = ¢ for all g€ Q c R.

If >0¢€R, then 6(r) =0((y/r)?) =0(y/r)? > 0. If there exists s; € R — Q such that
0(s1) = s2 # s1. W.L.O.G., suppose that sy > s;. Then select a rational number
q € (s1,82). As the following figure indicates.
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15.53
15.57

15.58
15.59

S14

BN
%_%
q S2
We have
l 1
0 < 0(qg—s1)=0(q)-0(s1)=q—s2<0,

a contradiction. ]
Determine all ring homomorphisms from R to R

Let Z[i] = {a+bi | a,b € Z}. Show that the field of quotients of Z[] is ring-isomorphic
to Q[i] = {r+si|r,seQ}.

Proof. Let F be the field of quotients of Z[i]. Then

F:{CHZZ |a+bi,c+dieZ[i],c+di¢0}.

c+di
Define a mapping 6 from F to Q[i] and show that 6 is a ring isomorphism. [ ]
Let F' be a field. Show that the field of quotients of F is ring-isomorphic to F'.

Let D be an integral domain and let F' be the field of quotients of D. Show that if
FE is any field that contains D, then E contains a subfield that is ring-isomorphic
to F. (Thus, the field of quotients of an integral domain D is the smallest field
containing D.)

tm7e. FEFRECATES, Bl

AT ZEREME field of quotient BY=1EE,

o Fz]< F(x),
o char F=p=7Z,<F,char F=0=Q<F,
e 0.:Q[z] >R, 0,(f(x)) = f(r), kerf, =0,

Q[z] 2 Q[x]/ker 0, = Tm(0,) = Q[r],
Q] < Q(7).
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15.61

15.65

16.2

16.3

16.4

16.5

16.11

16.16

Show that the relation = defined in the proof of Theorem 15.6 is an equivalence
relation.

Let f(x) e R[x]. If a+bi is a complex zero of f(x) (here i =v/-1), show that a—bi
is a zero of f(x).

. If 2 = a+bi € C, then denote the conjugate of 2z by z = a — bi. Note that if
reR, then 7 =r.

Proof. Denote the complex conjugate of z = a+bi € C by Z = a — bi. Recall that

Zitz1=Z1+722 and Z1 23 = Z1 - Z2. If 2z € R, then Z = 2. Suppose that f(x) =

apx™ +a1x + ag € R[z]. If z is a root of f(x), then 0= f(2) =a,2" + a1z +ag. It
follows that

f(Z)
= ap,Z" + a1z + ag
= a2+t a1z +ag

= apZ"+--+mz+ag

= apZ"+ a1z + Qg

Therefore, Z is also a root of f(x).
7. EREE T EREE T,

16 Chapter 16

In Zs[x], show that the distinct polynomials 4 + z and 22 + x determine the same
function from Zs to Zs.

Show that 22 + 3z + 2 has four zeros in Zsg.

If R is a commutative ring, show that the characteristic of R[x] is the same as the
characteristic of R.

Prove Corollary 1 of Theorem 16.2. (Remainder Theorem) Let F' be a field, a € F,
and f(x) € F[z]. Then f(a) is the remainder in the division of f(x) by = —a.

If $: R — S is a ring homomorphism, define ¢ R[z] - S[x] by (ana™ + - +ag) —
d(an)x™ + -+ ¢(ap). Show that ¢ is a ring homomorphism.

Are there any nonconstant polynomials in Z[z] that have multiplicative inverses?
Explain your answer.

}en. See Exercise 12.25.
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16.17 Let p be a prime. Are there any nonconstant polynomials in Z,[x] that have
multiplicative inverses? Explain your answer.

}en. See Exercise 12.26.

16.19 (Degree Rule) Let D be an integral domain and f(x),g(x) € D[z]. Prove that
deg (f(z)-g(x)) = deg f(x) + degg(x). Show, by exampe, that for commutative
ring R it is possible that deg f(z)g(z) < deg f(z) + deg g(x), where f(z) and g(z)
are nonzero elements in R[xz].

16.20 Prove that the ideal (x) in Q[x] is maximal.
Rm. = REH,

16.21 Let f(x) belong to F[x], where F is a field. Let a be a zero of f(z) of multiplicity
n, and write f(z) = (x —a)"q(z). If b + a is a zero of ¢(x), show that b has the
same multiplicity as a zero of ¢(x) as it does for f(x).

16.23 Let F' be an infinite field and let f(z) € F[z]. If f(a) = 0 for infinitely many
elements a of F', show that f(x)=0.

16.24 Let F be an infinite field and let f(z),g(z) € Flz]. If f(a) = g(a) for infinitely
many elements a of F', show that f(x) = g(x).

16.25 Let F' be a field and let p(z) € F[x]. If f(z),g9(x) € F[z] and deg f(x) < degp(x)
and deg g(x) < deg p(z), show that f(z)+(p(x)) = g(x)+(p(x)) implies f(z) = g(z).
.
f(@) +{p(x)) = g(z) + (p(x))
= f(z)-g(z) € {p())
= plx)] f(z)-g(z)
= f(x)=g(x) =p(z)q(x) for some q(z) € Z[x]

1) 0()20
= deg(f(x)-g(x)) 2 degp(x)
On the other hand, if f(z)-g(z) # 0, then deg (f(x) — g(x)) < max (deg f(z),degg(z)) <
degp(x), a contradiction.
16.26* Prove that Z[z] is not a principal ideal domain.
#E/R. Show that (2,x) is not principal.

Proof. 1t (2,x) is principal, then (2,z) = (f(z)) for some f(z) € Z[x]. Tt follows
that z = f(z)-g(z) and 2 = f(x) - h(zx) for some g(z),h(z) € Z[x].

2= f(z) Mx)

Exercise 16.19
= 0 =deg2=deg f(x) + degh(x)
= deg f(x) =0

2:f(a:f~h(z)
= f(x) e {z1,£2}
(f(2))=(2,2)#L[]

Exercise 14.15

Exercisle 12.25
= f(x) € {£2}, contrary to that x = f(x) - g(x).
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16.28 Let f(x) € R[x]. Suppose that f(a) =0 but f/(a) # 0, where f’(x) is the derivative
of f(z). Show that a is a zero of f(z) of multiplicity 1.

16.31 Let F be a field and let

1

I = {ap2"+a, 12"+ +ag|an,an1,...,a0 € F and

Ap + A1+ +ag = 0}.
Show that I is an ideal of F[x] and find a generator for I.

1. Note that if f(x) €I, then f(1)=0and (x-1)| f(x).

Proof. Suppose that f(z) = a,z™+---+ag € I, where a,, +---+ag = 0. Then f(1) =0.
By p.303, cor.2, f(x) = (z-1)q(x) for some g(z) € F[x]. Thus, (z—1) is a generator
of I and I = (x - 1) as a set. We already know that (z — 1) is an ideal of F[z].
Therefore, I = (x—1) is an ideal of F[z]. n

fi7e. In fact, F[z] is a principal ideal domain.

16.33 Let m be a fixed positive integer. For any integer a, let @ denote a (mod m). Show
that the mapping of ¢ : Z[z] - Z,,[x] given by
A(ana™ + Qp 2™+t ag) = Q™ + T "+ + T

is a ring homomorphism.

Proof. Suppose that f(x) = Y yaa?, g(x) = ¥ty byxt € Z[x]. Suppose that f(x)g(x) =
h(z) = ¥i%" cix®, where ¢; = 3,4 a;br. Then

(£
1=0

o(f(x)-g(x))

Without loss of generality, we suppose that n = deg f(z) > deg g(x) = m. Then we
can write g(z) as Y1y bzt = byx™ + -+ + by @™ + -+ + by + by, where b, = b,y = - =
bm+1 =0.
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Then

o(f(x) +g(x)) = Cb(iaﬁiﬁLibmi)

=0 1=0
= ¢ (Zo(az + bz)x’)

16.35 For every prime p, show that
#7112 (= 1)@ -2) o - (p-1)]
in Z,[x].

. Note that Z, - {0} is a group under multiplication. By Lagrange’s Theorem,
for any a € Z, — {0}, |a| divides |Z, - {0}| =p - 1.

16.44 Let R be a commutative ring with unity. If I is a prime ideal of R, prove that I[z]
is a prime ideal of R[z].

R, H=REHEK R[z]/I[x] 2 (R/I)[z] Kk D is an integral domain implies that
D[x] is also an integral domain.

Proof.

I is a prime ideal of R

Y

R/I is an integral domain
R[z]/I[z] 2 (R/I)[z] is an integral domain
I[z] <« R[x] is a prime ideal of R[z].

Y

Y

16.46 Prove that Q[z]/(z2 - 2) is ring-isomorphic to Q[v/2] = {a + /2 | a,b e Q}.

2. Consider 0 5 : Q[z] - R, 6 5(f(z)) = f(V/2). By First Isomorphism Theorem
for Rings.

16.49% Let g(x) and h(z) belong to Z[z] and let h(z) be monic. If h(z) divides g(z) in
Q[z], show that h(z) divides g(x) in Z[x].
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Proof. Suppose that g(x) = h(z)q(x) € Z[x], where
h(x) = hpa™ + By 2™ + oo+ hyw + by € Z[ 2]

and

() = @™ + @™+ + qur + qo € Q]

We show that ¢, € Z and if ¢,,, ¢-1, ..., @i € Z for k=0,1,2,....,n—-1, then q,,_x_1 € Z.
Since h(x) is monic, we have hy, =1 and gmin = Xisjomen Pids = Pmn = Gn € Z.

Note that

Im+n-1 = Z thg = thn—l + hm—lQna
i+j=m+n—1
Gm+n-2 = Z th] = hinGn-2 + Nm-1Gn-1 + Pn-2Gn,

i+j=m+n-2

Im+n—k = Z th] = thn—k + hm—lQn—k+1 toeeet hm—ana

i+j=m+n-k

Imin—k-1 = Z th] = hmqnfkfl + hm71ank +oe+ hmkanfl + hmfk71Qn
i+j=m+n—-k-1
hwj;:l
= Qn-k-1t (hm—IQn—k +oeeet hm—an—l + hm—k—lQn)-
Thus,

An-k-1 = 9m+n-k-1 — (hmflcbkk +oeeet hmfk:anl + h'mfk:—IQn)-

If AnsQn-1, -+, 4n-k € Za then

An-k-1 = 9m+n-k-1 — (hm71Qn—k +oeeet hmfkqnfl + hmfk71Qn) €.

#®7R. Suppose that g(z) = h(z)q(z) € Z[z], where
h(x) = ™ + Rypp1 2™ + o + hyw + hg € Z[ 2]
and
() = @™ + g™+ o+ + o € Q]
We show that ¢, € Z and if ¢,,, ¢p_1, ..., Gn_r € Z for k=0,1,2,...,n—1, then ¢,,_p_1 € Z.
Since h(x) is monic, we have hy, = 1 and gmin = Xisjomin PiQ5 = Pmln = Gn € Z.
Note that

Im+n-1 = Z hin = hinGn-1 + Nm-1Gn,
i+j=m+n—1
Im+n-2 = Z thj = thn—Q + hm—lQn—l + hm—2Qn>

i+j=m+n-2

Im+n—k = Z hzq] = hinGn-k + Nn-1Gn-k+1 + - + Rk,

i+j=m+n-k

Z th] = hmqn—k—l + hm—lQn—k +oeet hm—an—l + hm—k—lQn

i+j=m+n—k-1

Im+n-k-1

gn-k-1 t+ (hm—1Qn—k toeeet hm—an—l + hm—k—lqn)-
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16.59*

17.3

17.4%*

Thus,
Qn-k-1 = 9m+n—-k-1 — (hm—lqn—k +oeeet h’m—an—l + h’m—k—lQn)-

If An;Qn-1, -+ qn-k € Z7 then
dn-k-1 = 9m+n-k-1 — (hm—IQn—k +oe hm—an—l + hm—k—lQn) € Z.

Let f(x) belong to Z[z]. If a (mod m) =b (mod m), prove that f(a) (mod m) =
f(b) (mod m). Prove that if both f(0) and f(1) are odd, then f has no zero in Z.

Proof. Suppose that r is a root of f in Z. If r is even, then r = 0 (mod 2) and
0= f(r) = f(0) (mod 2) and f(0) is even, a contradiction. If r is odd, then r = 1
(mod 2) and 0= f(r) = f(1) (mod 2) and f(1) is even, a contradiction. |

IR, If r is a root of f in Z. If r is even, then r =0 (mod 2) and 0 = f(r) = f(0)
(mod 2) and f(0) is even, a contradiction. If r is odd, then ...

17 Chapter 17

Show that a nonconstant polynomial from Z[xz] that is irreducible over Z is primi-
tive.

#@7R. By definition.

Suppose that f(z) = 2"+ a, 12" ' + -+ ag € Z[x]. If r is rational and x —r divides
f(x), show that r is an integer.

Proof. Suppose that f(x) = (x —7)q(x) and r = {, where ged (s,t) = 1. Then
f(r)y=(r-r)q(r)=0 and

0=f(r)= f(;) = (;)n + Ayt (;)n—l +otag (;) + ag.

Multiplying both sides by t", we get
0=5"+a, 18" "+ +ast" " +apt"

and
—5" = t(Ap_1 8" + a5t + apt™ ).

Then ¢ | s" and t | s because ged (s,t) = 1. u

. Suppose that f(x) = (z —r)q(xz) and r = £, where ged(s,t) = 1. Then
£() = (- )a(r) =0 and

0=f(r)= f(;) = (;)n + Upy (;)n—l +otay (;) + ag.

Multiplying both sides by t", we get

and
-s" =t( ).

Then ¢ | s” and t | because ged (s,t) = 1.
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17.5 Let F' be a field and let a be a nonzero element of F'.

(a) If f(x+a) is irreducible over F, prove that f(x) is irreducible over F.

Proof. If f(x+a) is irreducible over F' and suppose that f(x) = g(x)h(x), then
f(x+a)=g(z+a)h(x+a) and g(z+a) is a unit or A(x+a) is a unit. Without
loss of generality, suppose that g(x+a) is a unit. Then g(x+a) =c+ 0 € F and
g(x) =c+0¢e F. That is, g(x) is also a unit. Therefore, f(x) is irreducible
over F. [ ]

(b) Use part [0a] to prove that 823 — 6z + 1 is irreducible over Q.

Proof. Let f(x) =8x3—-6x+1€Q[x]. Then f(x+1) = 8x3 + 2422 + 18x + 3.
Which is irreducible over Q by Eisenstein’s Criterion with p = 3. Therefore,
f(z) is irreducible over Q. ]

17.8 Suppose that f(z) € Z,[x] and f(x) is irreducible over Z,, where p is a prime. If
deg f(x) = n, prove that Z,[z]/(f(x)) is a field with p" elements.

fwFe. EETHEEEER, EREAEHEN—(EEAM, B2 finite field FE 77 EHIHE R
KB, It f(z) € F[x] is irreducible over F, then (f(z)) is a maximal ideal in F[z]
and Flz]/(f(x)) is a field.

17.9 Construct a field of order 25.

Proof. List all monic polynomials of degree 2 in Zs[z]. They are

2 has root 0
2 +1 has root 2
T2 +2 has no root in Zs

By Theorem 17.1, 22 + 2 is an irreducible polynomial of degree 2 over Zs. By
Corolloary 1 of Theorem 17.5, Zs[x]/(z? + 2) is a field. Furthermore,

Zs[z]/(z* +2)
= {f(x) +(2® +2) | f(z) € Zs[x]}

by division algorithm,

f(@)=(z?+2)-q(z)+r (),
r(x)=0 or degr(z)<deg (xz2+2)
!

= {[(2*+2)-q(z) +r(2)] + (2% + 2)

| for some q(z),r(z) € Zs[z],r(x) =0 or degr(z) < deg (2? +2)}
= {((2*+2) + (22 +2)) - (q(2) + (22 +2)) + (r(z) + (27 + 2))

| for some q(z),r(x) € Zs[x],r(x) =0 or degr(z) < deg (z* +2)}

- (04 (22 4+ 2) by T+ 2)) + (r() + (22 +2))

| for some q(z),r(x) € Zs[x],r(x) = 0 or degr(z) < deg (z* +2)}
= {r(z)+(z*+2) | r(x) =0 or degr(z) <2}
= {(az +b) +{2*+2) | a,beZs}.
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Therefore, Zs[x]/{x? + 2) is a finite field of order 52 = 25.

Remark. All the monic irreducible polynomials of degree 2 in Zs[z] are

% + 2,
z? + 3,
22rr+l,
2+ +2,
2%+ 22+ 3,
2%+ 2x + 4,
2% +3x + 3,
2% + 3z +4,
2?2 +dr+1,

2?2+ 4z + 2.

You can choose any one of them to construct a finite field of order 25. [ ]
17.10 Construct a field of order 27.

Proof. List all monic polynomials of degree 3 in Zs[z]. They are

3 has root 0
3 +1 has root 2
3 +2 has root 1
R has root 0

3 42 +1 hasroot 1
3 4z +2 has root 2
23 +2x +1 has no root in Zs

By Theorem 17.1, 23 + 2z + 1 is an irreducible polynomial of degree 3 over Zs. By
Corolloary 1 of Theorem 17.5, Zs[x]/(z3 + 22 + 1) is a field. Furthermore,

Za[z]/(2® + 22 + 1)

= {f(2) +(z° + 20+ 1) | f(2) € Zy[]}

= {[(@®*+2z+1)-q(z) +7(z)] + (2 + 22 + 1)
| for some q(z),r(z) € Zs[x],r(x) =0 or degr(z) < deg (z*+2x+1)}

= {((@®+2z+ 1)+ (2®+2z+ 1)) (q(z) + (2 + 2z + 1)) + (r(z) + (2® + 22 + 1))
| for some q(z),7(z) € Zs[x],r(x) =0 or degr(x) < deg (x*+2x+1)}

_ {(O+<$3+2;pm+ (r(x)+(x3+2x+1))

|meeq(m),r(m) € Zs[z],r(x) =0 or degr(z) <deg(x®+2x+1)}
= {r(x)+({2*+22x+1) |r(x) =0 or degr(x) <3}
= {(az?+bx+c)+{z®+22+1)|a,b,ceZs}.

Therefore, Zs[x]/{x® + 2z + 1) is a finite field of order 33 = 27.
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Remark. All the monic irreducible polynomials of degree 3 in Zs[z] are

2 +2r+1,
23+ 22 +2,

23+ 2?2+ 2,

3+t +x+2,

2+ 22+ 22+ 1,
2?4222 + 1,
2 +20 x4+ 1,

3+ 222 + 21 + 2.

You can choose any one of them to construct a finite field of order 27. [ ]

17.11 Show that 23+ 22+ + 1 is reducible over Q. Does this fact contradict the corollary
to Theorem 17.47

Proof. Observe that z3+x2+x+1 = (23+22)+(z+1) = 22(x+1)+(xz+1) = (22+1)(z+1)
(z-1)(z3+22+x+1)
(z-1)
(z2-1)
(z-1)
(22 +1)(22-1)
(z-1)
(22 + D)z +1)(z—1)
(z—1]
(2> +1)(x+1).

Byt +r+1 =

17.12 Determine which of the polynomials below is (are) irreducible over Q.

(a) x°+9x* + 1222+ 6
(b) 2t +z+1
(¢) z*+322+3
(d)

)

d) z5+5x2+1

(e) (5/2)x®+ (9/2)x* + 1523 + (3/7)x? + 62 + 3/14

Proof.

(a) Let f(x)=25+9z*+ 1222 + 6. Choose prime p = 3.
e p divides all the coefficients of f(x) except the leading coefficient.
e p doesn’t divide the leading coefficient 1 of f(x) and
e p? =9 doesn’t divide the constant term 6 of f(z).

By Eisenstein’s criterion, f(x) is irreducible over Q.
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(b) fiFE: EBAAMEZLRER f(x+1), f(x+2), f(x-1), f(z-2) BEEH Eisenstein’s
criterion,
EREAEEE, T, MEEB B IERUEE 2 &, BEIEERE,
Let f(z) = 2*+x+1. Consider f(z) = 2*+ 2+ 1 € Zy[x]. We want to show
that f(x) is irreducible over Z,. Then by Mod p Irreducibility Test, f(z) is
irreducible over Q.

f(z) has no root in Zg, so f(x) has no linear factor in Zy[z] by Factor Theo-
rem. But deg f(x) ¢ {2,3}, we can’t apply Theorem 17.1 on it.

List all monic polynomials of degree 2 in Zy[x]. They are

2 has root 0
2 +1 has root 1
2 4z has root 0

22 +x +1 has no root in Z,

By Theorem 17.1, 2% + ¥ + 1 is the only one irreducible polynomial of degree
2 over Zy. If f(r) = 2* + 2+ 1 is not irreducible over Z,, then it must be
f(z) = (2% + 2 + 1)? because f(r) has no linear factor. But (2 +z +1)* =
z*+ 22+ 1+ f(x). Hence, f(z) is irreducible over Z,.
(c) Let f(x)=x*+ 322+ 3. Choose prime p = 3.
e p divides all the coefficients of f(x) except the leading coefficient.
e p doesn’t divide the leading coefficient 1 of f(x) and
e p? =9 doesn’t divide the constant term 3 of f(z).
By Eisenstein’s criterion, f(x) is irreducible over Q.
(d) Let f(x) = 2®+ 522+ 1. Note that f(x —1) = 2® - bz* + 1023 — 522 - 5x + 5.
Choose prime p = 5.
e p divides all the coefficients of f(z —1) except the leading coefficient.
e p doesn’t divide the leading coefficient 1 of f(x-1) and
e p? =25 doesn’t divide the constant term 5 of f(z —1).
By Eisenstein’s criterion, f(x —1) is irreducible over Q, so is f(x) by Exercise
17.5.
i IRREr g, REBAEFRE f(v+1), f(2+2), f(z-1) BZ f(z-2),
—MZRER, Bt trial and error, ARAEBMAE T, "L 5%, T, IR,
RUAER IR HE T5 R,
(e) Let f(x)=(5/2)x>+ (9/2)x* + 1523 + (3/7)x? + 62 + 3/14. Consider 14f(x) =
352% + 63z + 21023 + 622 + 84x + 3. Choose prime p = 3.
e p divides all the coefficients of 14 f(x) except the leading coefficient.
e p doesn’t divide the leading coefficient 35 of 14 f(x) and
e p? =9 doesn’t divide the constant term 3 of 14f(x).

By Eisenstein’s criterion, 14 f(x) is irreducible over Q, so is f(x) by Exercise

17.5.

17.13 Show that x* + 1 is irreducible over Q but reducible over R.
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17.14

17.15

7. Show that z*+1 is irreducibe over Z. Then by p.313, Theorem 17.2. You can
assume that 24 + 1 = (az? + bx + ¢)(dx? + ex + f), where a,b,c,d, e, f € Z.

2+ 1= (22 =22+ 1) (22 + 2z +1).
Proof. Let f(x)=x*+1. Note that f(x+1) = 2%+ 423 + 622 + 4x + 2. Choose prime
p=2.

e p divides all the coefficients of f(z + 1) except the leading coefficient.

e p doesn’t divide the leading coefficient 1 of f(x + 1) and

e p? =4 doesn’t divide the constant term 2 of f(x +1).
By Eisenstein’s criterion, f(x+1) is irreducible over Q, so is f(z) by Exercise 17.5.
241 = (22)241 = (2241)2-222 = (2°+1)%=(V22)? = (22 +V2x+1) (2®—V/2x+1) € R[z].

|

wFe. IR LASERE ot + 1 FE C tho g, 3t HiG DU B e @ BURIREI W 8 — R 2 H
Tt —FE A B

P+l = (22)2-(-1)

I
1/~~~
S
[\o}
|
N
~
—~~
S
[}
+
o~
~—

_ —x_(@+£i)' 'x_(ﬁ
2
(22 =2z +1)(2® + 2z +1).

Show that z2 + x + 4 is irreducible over Z;.

22+ x +4 has no root in Z; and deg (2% + x +4) = 2. By Theorem 17.1.

Let f(z) =23 +6€Z;[x]. Write f(x) as a product of irreducible polynomials over
Zr.

Proof. Note that f(1) =13+6 =7 = 0. By Factor Theorem, (z - 1) is a factor of
f(x).

-1 ) 3 +6
23 2
2
2 -
r 46
rz -1
0

145



Thus, f(z) = (z-1)(2?+z+1). Let g(z) = 22+ +1. Note that g(2) =0. By Factor
Theorem, (z —2) is a factor of g(z).

T  +3
x -2 ) 2 +x +1
x? -2z
3z +1
3z -6
0
Therefore, g(x) = (z-2)(x+3) and f(z)=(x-1)(z-2)(x+3). |

17.16 Let f(z) =23 +x2+x+1 € Zy[x]. Write f(z) as a product of irreducible polynomial
over Zs.

Proof. Note that f(1) =0. By Factor Theorem, (z —1) is a factor of f(x).

2 +1

-1 ) 3 +x? +x +1
2

T3 -z
+zr +1

+zr -1

0

Thus, f(z) = (x —1)(2?2 +1). Let g(x) = 22+ 1. Note that g(1) = 0. By Factor
Theorem, (z —1) is a factor of g(z).

r +1
x-1 ) x? +1
x? -z
r +1
r -1
0
Therefore, g(x) = (x - 1)(x+1) and f(z)=(x-1)(z-1)(z+1) = (z+1)3. u

17.17* Let p be a prime.

(a) Show that the number of reducible polynomials over Z, of the form 2% +ax +0b
is p(p+1)/2.

Proof. [73iE—]
#{reducible polynomial x? + ax + b}
#{(x-a)(x-B) |, BeZy}

#{(z-a) |aeZ,} +#{(z-a)(z-B) |a*Bel,}
p+(p):p+p(p—1) _pp+1)

2 2 2
[75EZ]
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e Recall that if f(x) € F[z] and f(z) € {2,3}, then f(z) is irreducible over
F if and only if f(z) has no root in F.

e If p=2, then there are 3 = @ reducible polynomials over Z,. They are
22, 22+ 1 and 22 + . We suppose that p > 3.

e Given a fixed a € Z,. For any f eZ,, let b=—-f?—-af. Then f is a root of
the polynomial z2 + ax + b.

e [t may seem that there are p choices for f and p possiblities of b. But this
is not the case. If f; # f5, then

~fi-afi=-fi-afs = (fi-f)(fi+fara)=0e fi+ fr+a=0.

That is, when fy = —a — f;, we get the same b.
e Note that

p=3

fizfo=—a-fi=2fi=-a< fi=(-a)- 27

That is, we have f; = fo when f; = (-a)-271.
p+1

e Therefore, there are ’%1 +1 = 5= choices for f.

(b) Determine the number of reducible quadratic polynomials over Z,.

RR. (p-1)-p(p+1)/2. Note that f(z) € F[z] has a root in F if and only if
rf(x) has a root in F', where r # 0 € F.

17.20 Prove that, for every positive integer n, there are infinitely many polynomials of
degree n in Z[x] that are irreducible over Q.

1278, Eisenstein Criterion.

17.27 (Rational Root Theorem) Let

1

f(x) =apa™ +ap 12" + -+ ag € Z[x]

and a, # 0. Prove that if r and s are relatively prime integers and f(r/s) =0, then
r|ap and s | ay,.

17.29% Show that z* + 1 is reducible over Z, for every prime p.

Proof. BIBUEEEAKG R EREEARI K8 7%, 7 LRI DU IERER) LB RFHEERY
ER, W, REIERKIIZ &

o Tithk— (REL): BIZHEMNEL.
in Zy[x], (x*+1)
in Zs[z], (z*+1)
in Zs[z], (z*+1)

(2 +1)(2? +1)
(22 +2+2)(2* +22+2)

(2% +2)(2* +3)

B OHE, FEENE, SRR ERE, R, SFFRATNEE—EH
p RFEAR A, AILUGH (2 +1) = (22 + ax + b) (2% + cx + d)s

147



o kT (KEK): A Mod-p Irreducibility Testo WIRFFLE p, HE 2t +1 2
irreducible over Z,, HIEERR s4,83,...,51,80 € Z, (psq + 1)a* + psga® +
psox? +psix + (pso+ 1) 7& irreducible over Qo A LEKEI—H s4, 53, ..., 51, 50
HEEEHENRAL, WA B EFE, BREEAKT. £ O HRIZEKT 24+1=
(22 + pr +1)2, HERITH,

o HE= (B3h): BEAEI—A finite field FEHE, LR ITEARE p.389, thm.22.2,
WMERFLE p 5 2% + 1 2 irreducible over Z,, 8l Z,[x]/{z* + 1) &—1# finite
field, 5 E = Z,[z]/{(x* + 1),

BE 1'+1=0e L, fill 2t =-1 H 28 =1 H 2 ¢ F Y multiplicative order & 8.
K& F - {0} fERE T2 —{Egroup, H Lagrange’s Theorem, 8 #Ex |E - {0}| =
pt -1, FLABRFIEERZA 8 + p' -1 BEIFE. AT p=2, NHEE 8+ p* -1, B
BEKE HEBWERAT p=3,p=>5, ..., A[E BT, BFE—E 1R p
A dL A8 (-1 =(p*+ 1) (p+ 1) (p-1) , R DUE RS A P B
BEAR, FER—RK, FEE (-z) B multiplicative order 172 8, fHE x = (-7)?,
FrLARE | (-x) B multiplicative order JERZE 16 ¥, SEEEERE T —LH
o

B p.389, thm.22.2, E - {0} #3E TR—Ecyclic group. f&& £ - {0} = (g), B
—x=g% Bl z=g¢? 4 |g7| &~ ¢" B multiplicative order,

4 _
it BT
ng(2d7p4 - ]-)

I aed (2 pt 1) = e (- 1), Bl

d = 2°-a, 2+4a,
2.b, 2+ b,
s<t.

d|: p4_1

=8=|-x|= _.
ol =8= |-l = o) = P

i~
N
I
[—
Il

& s<t, H
ged (d,p* - 1) = 2°ged (a,b) # 25 ged (a,b) = ged (24, p* - 1).
FTULE s=t, BEXELTET,

BEHZ—-T,0=0+(-2)=¢*+¢%=g%(¢¢+1), A F 2—{f integral domain
Hgt20, fill g?+1=0H ¢¢=-1 Hx=¢g*=1, F&,

17.31 Let F be a field and let p(z) be irreducible over F. If E is a field that contains
F and there is an element a in E such that p(a) = 0, show that the mapping
¢: F[z] - E given by f(x) - f(a) is a ring homomorphism with kernel (p(x)).

wre. FEHEE

17.32 Prove that the ideal (22 + 1) is prime in Z[z] but not maximal in Z[z].

Proof. Define 6 :Z[x] — Z[i] ={a+bi|a,beZ} <C by 0(f(x)) = f(i). Show that
0 is an onto ring homomorphism. Obviously, 22+ 1 € kerd, so (z2+1)Ckerf. By the
following Lemma, we have (2 + 1) = ker . By the First Isomorphism Theorem,

6 is onto

Z[z]/(z® +1) = Z[z]/kerf=Im 6 <+ Z[i]<C.
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Since Z[i] is a subring of the field C, Z[i] is an integral domain and (z? + 1) is a
prime ideal in Z[x]. Since 1+ ¢ has no multiplicative inverse in Z[i], Z[i] is not a
field and (22 + 1) is not a maximal ideal in Z[x].

Lemma. (22 + 1) = ker#: Define 0 : Q[z] - Q[i] = {a +bi | a,b € Q} by 0(f(x)) =
f(7). Show that 6 is an onto ring homomorphism and (22 + 1)=ker 6.

If f(2) € ker 6, then f(z) € ker = (x2+1). Assume f(z) = (22+1) (Z—:x” ST ‘;—g)
Let m=b,,-b,_1--'b1 - bg. Then

1
flx) = (x2+1)-—~(an1x"+~~+a1£x+aoz)
T bn bl bo
ged (an=, - a1, ag=
= (2 +1)- (nb" Loy Obo)-(cnx"+---+clx+co)

™

(% +1)- % “(epx™ + -+ 1+ )

(2% +1)-v-(cpx™ + -+ 17 + cp).

= wf(z)
where v, w, ¢, ...,c1, ¢ € Z and ged (¢, ..., ¢1,¢0) = 1 and ged (v, w) = 1 by canceling
out the common factor of ged (anﬁ,n-,al%,aoﬁ) and m. We show that w = 1.

Then we have f(x) € (22 +1) and (22 + 1) = ker 6.

If w # 1, then there exists a prime p divides w. Since ged (v,w) = 1, we have
p 4 v. Since ged (¢p, ..., ¢1,¢0) = 1, we have p 4 ¢; for some i € {n,...,1,0}. Consider
wf(z) € Zy[x]. We have

0

0-f(x)

=
g

Il

w- f(x)
= wf(x)

= (22+41)-v-(cpa™+ -+ 17 + )

= (22+41) -0 (cpz™ + -+ 17 + )

z (22+1) -0 (cpa™+ -+ 12+ ¢).,

# 0€Zy[z].
Which is a contradiction. [
7. EE, AR Division Algorithm REERTE Fx] L, FrATRFIAsE R HE
#J Division Algorithm KB (22 + 1) =kerf c Z[z], HEE L, F 22— field 551H
K5 T, THZEZER Division Algorithm,

Let R be a ring with unity and let f(x),g(z) € R[z]. If g(x) # 0 and the leading
coefficient of g is a unit in R, then there exists uniquely ¢(z),r(x) € R[] such that

f(x) =g(x)q(x) +r(x), where r(z) =0 or degr(z) < deg f(x).

HEMUH, FE R Factor Theorem #GHEATT,

Let R be a commutative ring with unity. Let a € R and let f(z) € R[x]. Then
f(a) =0 if and only if f(x) = (x —a)q(x) for some q(z) € R[x].

AR, BAFm] DUR T T 55— fE A,

If f(z) ekerd, then f(i) =60(f(z)) =0. By the Complex Conjugate Root Theorem,
f(=i) =0. By Factor Theorem, (z—i)(x+i) = (z2+1) | f(x). That is, f(z) € (z2+1).
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17.33

17.34

17.36*

p.317, thm.17.5

Let F be a field and let p(x) be irreducible over F. Show that {a + (p(x))|a € F}
is a subfield of F[xz]/(p(x)) isomorphic to F.

Let F be a field and let f(z) be a polynomial in F[x] that is reducible over F.
Prove that (f(x)) is not a prime ideal in F[x].

#®7~. By definition.

Suppose there is a real number r with the property that r + 1/r is an odd integer.
Prove that r is irrational.

Proof. If r € R satisfying

1
r+—:2]§+17 forsomekezu
r

then r = ErD= '24k2+4k_3. That is, given any integer k, there exists a real number r

such that r + % =2k + 1. We show that this real number r is irrational.
If r € Q, suppose that r = ¢, where ged (a,b) = 1, then

1
Pt =22 =2k 1.
r a

By some simple computation, we get a? +b% = (2k + 1)a?b?. If a and b are odd, then
a? + b? is even but (2k + 1)a?b? is odd, a contradiction. If a is odd and b is even,
then a? + b% is odd but (2k + 1)a?b? is even, a contradiction. If a and b both are
even, then ged (a,b) # 1, a contradiction. [

. If r € R satisfying

r+1=2/€+1; for some k € Z,
r

then 7 = ZR+1)= 24k2+4k_3. That is, given any integer k, there exists a real number r

such that r + % =2k + 1. We show that this real number r is irrational.

If r € Q, suppose that r = ¢, where gcd (a,b) = 1, then

1 b
r+—=g+—=2k+1.
r a

By some simple computation, we get a? + b = (2k + 1)a?b?. If a and b are odd, then
a? + b? is even but (2k + 1)a?b? is odd, a contradiction. If a is odd...

Let F be a field and let p(z) € F[x]. Then (p(z)) is a maximal ideal in F[z] if and
only if p(x) is irreducible over F.

Proof. (=) If (p(x)) is a maximal ideal in F[z], then (p(x)) # {0} and

p(x) #0, (21)
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otherwise, {0} = (p(z)) & (z) ¢ F[x], contrary to the maximality of (p(x)).

Suppose that p(z) = a(z)b(x) (22)
= {p(x)) € {a(x)) € Flz]
(p(2)) is a maxiinal ideal in F[z]
= {a(x)) = {p(x)) or {a(x)) = Flz].

If (a(z)) = Flx] = 1¢€F[x]=(a(x))
= 1=a(x)q(zx) for some q(x) € F[x]

= a(x) is a unit.

If (a(x)) = (p(x)) = a(z) € (p(z))
= a(z) = p(x)q(x) for some q(x) € F|x]
22)
= p(x) = p(x)q(x)b(x)
= p(x)(q(x)b(x) - 1) =0

o

§ U

F[z] is an 1.

and by
q(x)b(z)-1=0
b(z) is a unit in F[z].

Therefore, p(x) is irreducible over F.

(<) Suppose p(x) is irreducible over F and (p(z)) € I € F[x]. Since F[z]isa P.I.D.,
we can assume I = (g(z)) for some ¢(z) € F[z]. Then (p(z)) ¢ (¢(z)) € F[z] and
p(z) € (q(x)) and p(z) = g(x)r(z) for some r(x) € F[x]. Since p(x) is irreducible
over F, either ¢(x) or r(z) is a unit. If ¢(x) is a unit, then (¢(x)) = F[z]. If r(z)
is a unit, then ¢(z) = p(x)r(z)~! and ¢(z) € (p(z)) and (p(x)) = (¢(x)). [

p.317, cor.1 Let F' be a field and p(z) be an irreducible polynomial over F'. Then F[x]/(p(z))
is a field.

Proof. 1f p(z) is irreducible over F', then (p(x)) is a maximal ideal in F[z]. By
p.274, thm.14.4, F[z]/(p(z)) is a field. [

7 17.A Construct a field of order 4.

Proof. List all monic polynomials of degree 2 in Zy[z]. They are

2 has root 0
2 +1 has root 1
2 4z has root 0

2 42 +1 has no root in Z-
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By Theorem 17.1, 2 + x + 1 is the only one irreducible polynomial of degree 2 over
Zs. By Corolloary 1 of Theorem 17.5, Zy[x]/{x? + z + 1) is a field. Furthermore,
Zo[z]/(z* + 2 + 1)
= {f(@)+{@®+a+1)| f(2) € Z[x]}
= {[(@*+x+1)-q(2) +r(z)] + (2® + 2+ 1)
| for some q(z),r(x) € Zy[x],r(x) =0 or degr(z) <deg(z*+x+1)}
= {((a:2+a;+1)+(:zc2+:v+1))-(q(a:)+(.r2+a:+1))+(r(a:)+(a:2+x+1))
| for some q(z),7r(z) € Zy[z],r(x) =0 or degr(z) <deg(2®+x+1)}

(04 0 s )T 1) ¢ () ¢ e 1)

|fmmeq(x),r(x) € Zo[z],r(x) =0 or degr(z) <deg(a®+z+1)}
= {r(x)+(@*+2+1)|r(x)=0or degr(z) <2}
= {(ax+b)+(z*+x+1)|a,beZsy}.

Therefore, Zs[x]/(x? + x + 1) is a finite field of order 22 = 4. [

7 17.B Construct a field of order 9.

Proof. List all monic polynomials of degree 2 in Zs[x]. They are

2
2

has root 0
+1 has no root in Zs

T
T

By Theorem 17.1, 22 + 1 is an irreducible polynomial of degree 2 over Zjz. By
Corolloary 1 of Theorem 17.5, Zs[x]/(z? + 1) is a field. Furthermore,
Zs[x]/{x* +1)
= {f(@)+ (=" +1)| f(z) € Zs[x]}
= {[@*+1)-q(@) +r(2)]+(2® + 1)
| for some q(z),r(x) € Zs[z],r(x) =0 or degr(x) < deg(z*+1)}
= {((ac2 +1) + (2 + 1)) . (q(:z;) + (2% + 1)) + (T(SL’) +({x? + 1))
| for some q(z),r(x) € Zs[x],r(x) =0 or degr(z) < deg (z*+1)}
= {04 (2 1)) Al T 1 1) + (r() + (22 4 1))
| for some q(z),r(z) € Zs[z],r(x) =0 or degr(x) < deg(z*+1)}
= {r(z)+(z*+1)|r(z) =0 or degr(z) <2}
= {(ax+b)+(z*+1) | a,beZs)}.
Therefore, Zs[x]/{x? + 1) is a finite field of order 32 = 9.

Remark. All the monic irreducible polynomials of degree 2 in Zs[x] are

22+ 1,
22rr+2,

22 +2x + 2.

You can choose any one of them to construct a finite field of order 9. [ |
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18 Chapter 18

18.1 For the ring Z[V/d] = {a +b\/d | a,b € Z}, where d # 1 and d is not divisible by the
square of a prime, prove that the norm N(a + bV/d) = |a® - db?| satisfies the four
assertions made preceding Example 1.

Proof.
N(a+bVd) = |a® - db?| = 0 < a® - db? = 0 < a® = db°.
Ifb+0, then d = (%)2, a contradiction. Thus, b=0 = a.

a+bVd is a unit
= there exists ¢+ eV/d such that (a+bV/d)(c+eVd) =1
N(a+bV/d)-N(c+eVd)=N((a+b/d) - (c+eVd))=N(1) =1
= N(a+bV/d)=1

Y

N(a+bV/d) =1
= |a®>-db*|= N(a+b/d)=1
= a?-db® =<1
If a>-db*=1
= (a+bV/d)-(a-bVd)=a®-db?* =1
= a+bV/dis a unit
If a®-db*=-1
= (a+bVd) - (a-bV/d)=a?-db® = -1
= a+bV/dis a unit with inverse (-1)(a - bV/d)

7.

o FE . dTREBEH, HtE d<0.
o I norm B BLFEDUER T T R 7E B B T _E R B R B B,
o HEIEEAERAE RS FEEHHEH L,

18.2 In an integral domain, show that a and b are associates if and only if (a) = (b).

Proof. (=) If b= ac, then b€ (a) and (b) € (a).

(<) Suppose that (a) = (b). If a =0, then b = 0 = a. Suppose that a # 0. Then
a € (b) and a = bg; for some ¢; € R. On the other hand, b € (a) implies that b = ags
for some ¢y € R. Therefore, a = bq; = abga and a(1 - bgy) = 0. [

e, HEER, EEAMENRREES K LRE —FE.
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18.8 Let D be a Euclidean domain with measure d. Prove that w is a unit in D if and

only if d(u) =d(1).

Proof. (=)
u=1-u=d(u)=d(1l)d(u) =d(1) <d(u).

On the other hand,

u 1s a unit
= there exists u~' € D such that uu' =1
= d(u)d(u™) =d(uu) =d(1)

= d(u) <d(1).

Therefore, d(u) =d(1).
(<) By Division Algorithm,

1 =wuq+r for some ¢, € D, where r =0 or d(r) <d(u) =d(1).

On the other hand, d(r) = d(1-r) = d(1)-d(r) implies that d(1) < d(r). Thus, r

must be 0 and 1 =uq and u is a unit. [

18.9 Let D be a Euclidean domain with measure d. Show that if a and b are associates
in D, then d(a) = d(b).

Proof.

a and b are associates in D

(a) = (b)

a =bgq; and b = aqy for some q1,q2 € D

d(a) =d(bg:) = d(b)d(q:) and d(b) = d(a)d(gz)
d(b) <d(a) and d(a) < d(b)

d(a) =d(b).

b4 iy

#7e. Bl Exercise 18.2lh#— T,

18.10 Let D be a principal ideal domain and let p € D. Prove that (p) is a maximal ideal
in D if and only if p is irreducible.
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Proof.

Suppose that 0 # (p) is a maximal ideal and p = ab

= (p)c{a)c D
(p) is nIaximal

= (a) =(p) or {a) =D
If (a) = (p)
= a = ps for some s € D
= p =ab=psb
= p(sb-1)=0

D is an 1D. and p#0
= sb=1
= b is a unit.
If (a) =D
= leD={a)
= 1 = at for some t € D

Y

a 1s a unit.

Therefore, p is irreducible in D.

Suppose that p is irreducible and (p) € I < D

D is alP4I4D.
= I'={q) and (p) c(q) € D

= p € (q) and p = qr for some r € D

p is irreducible

= q is a unit or r is a unit
If ¢ is a unit

= (q)=D

If r is a unit

= q=pr

= qe{p)

= {9 =
Therefore, (p) is a maximal ideal. |

wFe. EEUELIN—E (p) + 0 BIFBEF.

18.12 Let D be a principal ideal domain. Show that every proper ideal of D is contained
in a maximal ideal of D.

Proof. Suppose that D is a P.I.D. and I = (a) is a proper ideal of D. Since D is
also a U.F.D., suppose that a = uryry---r, for some irreducible elements rq, 79, ...,7,
and a unit u. Then I = (a) ¢ (r1) and (r1) is a maximal ideal by Exercise 18.10. =

f7e. In fact, if R is a commutative with unity, then every proper ideal of R is con-
tained in a maximal ideal of R, c.f. p.128, Theorem 2.18 in Hungerford’s “Algebra”.
EEEHEANFER, EHE Zorn's lemma,
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18.13

18.14

EH#E 18.15

18.17

18.18*

In Z[+/-5], show that 21 does not factor uniquely as a product of irreducibles.

Proof. 21 =(4++v/-5)(4—+v-5)=3-T.

Suppose that (4 ++v-5) = (a +b/-5)(c+d\/-5). Then 21 = N(4++/-5) = N(a +
bv/-5)N(c+dv-5). If N(a+bv-5) =1, then a+b\/-5 is a unit by Exercise 18.1.
If N(a+bv-5) =3, then a?+5b? = 3, which is impossible. If N(a+bv/-5) =7, then
a? + 5b? = 7, which is impossible.

Suppose that 3 = (a+bV/-5)(c+dv/-5). Then 9= N(3) = N(a+bv/-5)N(c+dv/-b).
If N(a+bV-5) =1, then a+b\v/-5 is a unit by Exercise 18.1. If N(a +bv/-5) = 3,
then a? + 5b% = 3, which is impossible.

Suppose that 7 = (a+bv/=5)(c+dv/-5). Then 49 = N(7) = N(a+b/-5)N(c+dv/-5).
If N(a+0bV-5) =1, then a+byv/-5 is a unit by Exercise 18.1. If N(a +bv/-5) =7,

then a? + 5b% = 7, which is impossible. [ ]
Show that 1 -1 is an irreducible in Z[i].

Proof. N(1-1i) =2 is a prime number and by Exercise 18.1. |
Show that Z[v/-6] is not a unique factorization domain. (Hint: Factor 10 in two

ways.) Why does this show that Z[\/-6] is not a principal ideal domain?

Proof. 10 = (2++v/-6)(2—+v-6) =2-5. You should show that (2++/-6), (2—v-6),2
and 5 all are irreducibles as you did in Exercise 18.13. If Z[v/-6] is a P.I.D., then
Z[/-6]is a U.F.D.. [

In Z[i], show that 3 is irreducible but 2 and 5 are not.

Proof. Suppose that 3 = 2y and = a+bi. Then 9= N(3) = N(xy) = N(z)N(y).
Without loss of generality, if N(z) = 1, then « is a unit by Exercise 18.1. If N(z) = 3,
then a? + b? = 3, which is impossible. Therefore, 3 is irreducible.

2=(1+¢)(1-4) and 5=(2+4)(2-14). (1+1),(1-14),(2+14) and (2-14) all are not
unit in Z[i] by Exercise 18.32. |

Prove that 7 is irreducible in Z[v/6], even though N(7) is not prime.

Proof. Suppose that 7 = (a — bv/6)(c—dv/6). Then 49 = N(7) = N(a+bv/6)N(c+
dv/6). If N(a+b\6) = 1, then a + b\/6 is a unit by Exercise 18.1.

If N(a+b/6) =7

49=N (a+bv/6) N (c+d\/6)

£ N(c+dV6) =7
= la* - 6b*| = |c* - 6d°| =7
= a® - 6b%, 2 - 6d? € {7,-7}
= A+ =0=+d*€Z,
Vaely, v2¢{0,1,2,4}
=S a=b=c=d=0eZ
= 7| (a-bV6) and 7| (¢ - dV/6)
= 49 | (a - bV6)(c - dV6) =7, a contradiction.
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B 18.20

18.21

18.22

f7e. HKMMIAIZE Exercise 18.1F#: If N(z) is a prime, then x is irreducible. i
RA—E AL, B2 — A+

Prove that Z[v/-3] is not a principal ideal domain.

Proof. A P.I.D. must be a U.F.D.. So we show that Z[v/-3] is not a U.F.D..

Consider 4 = (1 ++v-3)(1 -+v-3) =2-2. we show that (1++/-3),(1-+-3) and 2
all are irreducible. Then Z[+v/-3] is not a U.F.D..

Suppose that 1++/-3 = (a + bv/~-3)(c +dv/~3). Then 10 = N(1 ++/~-3) = N(a +
bW=3)N(c+dv-3).

If N(a+ b\/—_?)) =1, then a + bv/=3 is a unit by Exercise 18.1.

If N(a+bV/-3) =2, then a2 + 3b? = 2, which is impossible.

If N(a+bV/-3) =5, then N(c+dv/~-3) =2, which is impossible.

If N(a+0bv/-3) = 10, then N(c+d\/—_3) =1 and c¢+d+/-3 is a unit by Exercise 18.1.

Therefore, 1+ /-3 is irreducible. The proof of the irreducibility of (1 -+/-3) and
2 are similarly. [ ]

In Z[\/-5], prove that 1+ 3v/=5 is irreducible but not prime.

Proof. Irreducible: Suppose that 1 +3v/~5 = (a + bv/=5)(c + dv/=5). Then 46 =
N(1+3v-5)=N(a+b/-5)N(c+dV/-5).

If N(a+bv/-5) =1, then a + b\/-5 is a unit by Exercise 18.1.

If N(a+bV/-5) =2, then a2 + 5b2 = 2, which is impossible.

If N(a+bv/-5) =23, then N(c+d\/-5) = 2, which is impossible.

If N(a+bv/-5) =46, then N(c+dv/=5) =1 and c¢+dv/=5 is a unit by Exercise 18.1.
Therefore, 1+ 3v/-5 is irreducible.

Not Prime: We know that 46 = (1+3v/=5)(1-3v/-5) and (1+3v/-5) | 46 = 2-23.
If (1+3v/=5) |2, then 46 = N(1 +3v/=5) | N(2) = 4, which is impossible.

If (1 +3v/~=5) |23, then 46 = N(1 +3v/-5) | N(23) = 232, which is impossible.
Therefore, 1+ 3v/-5 is not a prime. [

In Z[\/5], prove that both 2 and 1+ /5 are irreducible but not prime.

Proof. 2 is irreducible: Suppose that 2 = (a + b\v/5)(c +d\/5). Then 4 = N(2) =
N(a+b/5)N(c+dV5).
If N(a+ b\/g) =1, then a + b/5 is a unit by Exercise 18.1.

If N(a+0\/5) =2, then a? —5b2 = 2. If such a and b exist, then a2 = 2 € Zs, which is
impossible.

If N(a+bV5) =4, then N(c+d\/5) =1 and ¢+ d+/5 is a unit by Exercise 18.1.

Therefore, 2 is irreducible.
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18.23

18.24

1++/5 is irreducible: Similar to the above case because 2 and 1 + /5 have the
same norm.

2 is not prime: Note that 2|4 = (1+v/5)(1-v/5), but 2 + (1+v/5) and 2 + (1-/5).
For if 2| (1++/5), then (1 ++/5) € (2) = {25+ 2t\/5| 5,t € Z}, which is impossible.

1 +/5 is not prime: Note that (1++/5) |4 =2-2, but (1+5) + 2. For if
(1+5) |2, then 2= (1++/5)y and 4 = N(2) = N(1+/5)N(y) = 4N (y). It follows
that N(y) = 1 and y is a unit by Exercise 18.1. Thus, 1+v/5 =2y! and 2| (1+/5).
Which is impossible. [

Prove that Z[\/5] is not a unique factorization domain.

Proof. [155%—] Consider 4 = 2-2 = (-1)(1 +V5)(1 = /5). 2 and 1 ++/5 all are
irreducible by Exercise 18.22. Thus, Z[v/5] is not a U.F.D..

(/555 If Z[\/5] is a U.F.D., then an irreducible element must be a prime element
by Exercise 18.43. But by Exercise 18.22, 2 is an example which is an irreducible
element but not prime. [

Let F be a field. Show that in F[x] a prime ideal is a maximal ideal.

Proof. Let P #0 be a prime ideal. Since F[z] is a P..D., we can write P = (p) for
some 0 # pe F[zx].

Claim: p is a prime.

If p|ab

abe (p)=P
aeP=(p)orbeP=(p)
plaorplb

b4

p is a prime element.
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18.31

18.32

18.34

Claim: p is a prime.

Suppose P c < F[x]

Flz] is a P.I1.D.

\ .

= {p) < (i) <« Flx]

= pe(i)

= p =1ij for some j € F[z]
= plij

p is prime

= pliorp|y.

If pli

= i€(p)

= I=(i)c(p)=P
= I=P

It plj

= j=ps

= p=1j =1ps
= p(is—1)=0
p=0

L is-1=0

= 1 is a unit

= I={i)=F|x].

7. EEEH EZES M—E “nonzeor” BIMEMH, HIZ07E P.I.D. Z &, 0 &—{& prime
ideal, (B2 —{# maximal ideals

Prove or disprove that if D is a principal ideal domain, then D[x] is a principal
ideal domain.

Proof. 7 is a P.1.D., but Z[z] is not a P.I.D.. |
Determine the units in Z[].

Proof. 1f a+bi € Z[i] and a+bi is a unit, then by Exercise 18.1, N(a+bi) = a?+b% =1
and a + bi € {1,-1,4,—i}. On the other hand, 1,-1,7 and —i all are units. [ |

Show that 3x2+4x+3 € Zs[x] factors as (3x+2)(z+4) and (4x+1)(2x+3). Explain
why this does not contradict the corollary of Theorem 18.3.

Proof. 2(x+4) = (2x+3) and 2 is a unit in Zs. 3(3z+2) = (4z+1) and 3 is a unit in
Zs. (x+4) and (22 +3) are associates. (3z+2) and (4z + 1) are associates. Which
does not contrary to the uniqueness of the factorization in the U.F.D. Z[z].

Proof directly. Note that 4=2-2=(1+ \/5)(—1 + \/3) We show that 2,1 + NG
and -1 ++/5 all are irreducible. Then the factorization of 4 is not unique and we
are done.
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18.35

18.36

18.37

Suppose that 1+ /5 = (a +b/5)(c+dV/5). Then 4 = N(1++/5) = N(a +b/5) -
N(c+dv5). If N(a+b/5) =1, then a + b\/5 is a unit. If N(a + b\/5) = 2, then
a? - 5b% = 2. If such a and b exist, then a? = 2 € Zs, which is impossible because for
all ceZs, ¢ 2.

Similarly, 2 and —1 + /5 both are irreducible by the same disscusion as above. m

Let D be a principal ideal domain and p an irreducible element of D. Prove that
D/{p) is a field.

Proof. Since p is irreducible in the P.I.D. D, by Exercise 18.10, (p) is a maximal
ideal. It follows that D/(p) is a field. [

Show that an integral domain with the property that every strictly decreasing chain
of ideals I1 o I3 o --- must be finite in length is a field.

Proof. For any 0 # r € R, consider the chain of ideals (r) 2 (r2) 2 ---. Since this
chain of ideals is finite length, we have

for some n € N*. It follows that

Vel
30303
[
-
3
+
+
»
S
=
03]
o
B
o
»
m
=

3
H#
[=}

rs—1=0

r is a unit.

§ U

7. A BERE, Wt E descending chain condition EAE field By
To 7 B—ERIFHIBIT, Z o 27 2 AZ > 8Z > ---, T BRI Fhfs T HMEHEE
HY 2 o

An ideal A of a commutative ring R with unity is said to be finitely generated
if there exist elements ay,as, ..., a, of A such that A = (a1, as,...,a,). An integral
domain R is said to satisfy the ascending chain condition if every strictly incerasing
chain of ideals I c I c --- must be finite in length. Show that an integral domain
R satisfies the ascending chain condition if and only if every ideal of R is finitely
generated.

Proof. (=) If I is an ideal in R which is not finitely generated. Pick a; € I. Then
(a1) # I because [ is not finitely generated. We pick as € I but ay ¢ (a;). Then we
have (a;) c (a1, as) but (a1) # (a1, a2) # I. Continuing this process, we get a infinite
strictly ascending chain of ideals

(a1} € (a1, a2) © (a1, a2,a3) c -
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18.42

18.43

18.61

Contrary to the hypothesis.

(<) For any ascending chain of ideals I; ¢ I € -, consider the ideal (U2, I;).
Since (U3, I;) is finitely generated, suppose (U352, 1;) = (a1, as, ..., a,). Suppose that
aj € Iy,, as € Iy, ..., a, € I, . Take k = max (ky,ko,...,k,). Then I, = I, for all
s > k and the chain of ideal I € I5 € --- is finite length

[1 c [2 c...-C [k = [k+1 = e,
|

Let R=Z®Z® - (the collection of all sequences of integers under componentwise
addition and multiplication). Show that R has ideals Iy, I5, I3, ... with the property
that [; c Iy c I3 c---. (Thus R does not have the ascending chain condition.)

Proof. I, =({e1,es,...,e,}), where e; € R has 1 in the ith position and 0 elsewhere.
[

Prove that in a unique factorization domain, an element is irreducible if and only
if it is prime.
Proof. (<) Theorem 18.1.

(=) Let ¢ be an irreducible element in a U.F.D. D. Suppose ¢ | ab. Since D is a
U.F.D., we factor a and b into the product of irreducible elements.

a uriro - Try.

b = Urps1Tne2 Tnem.
Then
c=ab=uvrireTnim.

Since the factorization is unique and c is an irreducible element, ¢ must be associates
to r; for some i € {1,2,....n+m}. If i € {1,2,...,n}, then ¢ = r;w for some unit w
and a = wluryry---(wr;)--r, and ¢ | a. Similarly, If i e {n + 1,n+2,...,n +m}, then
¢ | b. Therefore, ¢ is a prime element. m

f7e. #l p.330, Theorem 18.2HL#— T, #F Theorem 18.25& P.I.D., fE5&f2 U.F.D.

Let Iy ={f(x) € Z[x]| f(0) =0}. For any positive integer n, show that there exists
a sequence of strictly increasing ideals such that Iy c [y c Iy c .- c I,, c Z[z].

Proof.
Iy ={(z) c(z,2") c (z,2" ') c (-+-) c (x, 2).
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19.22

T 19.A

&
[

i

b

bl

19 Chapter 19

If V' is a vector space of dimension n over the field Z,, how many elements are in

V?

Proof. Suppose that {vy, vs, ...,v,} is a basis for V over Z,. Then V' = {a,v, +asvs +
e AUy | G € Ly [ ]

Let F be a field, F[z] the polynomial ring in x over F, and f(x) # 0 in F[x].
Consider V' = F[x]/J as a vector space over F', where J is the ideal of F[z] generated
by f(x). Prove that

dimpV =deg f(x).

Proof. View F[z]/J as an abelian group under addition. Define a scalar multipli-

ation -: F'x F[z]/J - F[z]/J by

A-(f(x) + ) = (Af(2)) +J.

Then F[x]/J is a vector space over F. If f(x) = a,z"+-+ayx +ag, then {1+ J z+
Jox?+ J ... 2"+ J} is a basis for F[z]/J over F. [ |

20 Chapter 20

Let f(z) € F[x] be the minimal polynomial of « over F' and deg f(x) = n. Then
F(a)={ap1a™ "+ +aja+ag|a; € F}

20.7, 20.1, 20.8, 20.9, 20.10, 20.37

If F<L<FE and aeL, then F(a)<L
20.2, #75.20.6, 20.19

Splitting field
20.29, 20.25, 20.34, 20.16
TR — S E S B R B0
o FIIF Theorem 20.7, 20.8%%3% f(x) has no multiple zeros 3&/&F—#k root KF,
BRI E K
o FIH a2 0% ot b, ..., ZEETER HEER,
o £ 7Z,H, (a+b)P=ar+0bP

o MIERRE 2 R polynomial 1 HERFEEH—{E root, BLARERE, HIU1 Exercise
20.29; N2 3 KE 3 RUULE, Bi—E—FETERERE, BERTRZ root, _E
H%—1# root K, BHARKRZ.

Criterion for Multiple Zeros
20.30, 20.31, 20.32, 20.33, 20.40
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bl

20.1

20.2

20.3

204

20.5

20.6

20.7

Splitting field
20.13, 20.26, 20.3, 20.4, 20.5, 20.38

Describe the elements of Q(¥/5).

Proof. {a(3/5)2+b/5+c|a,b,ceQ}. m
Show that Q(v/2,v/3) = Q(v2+V/3).

Proof. \/3-V2= sl = (V2+V3) e Q(vV2 +V3).

V3= EB D o34 vB).

Therefore, Q(v/2,v/3) € Q(v/2 + V/3). n

Find the splitting field of 23 — 1 over Q. Express your answer in the form Q(a).
Proof. Q(&;), where & =5 = cos ZrisinZ. (3 -1)=(z-1)(z-&)(z-&).

Another expression is Q(v/3i),

:U3—1=(x—l)(x2+x+1)=(x—1)(x—(_1+—\/§i))(x—(_1_—\/§i)).

2 2
|
Find the splitting field of 24 + 1 over Q.
Proof.
rt+1 = (2% —i) (2% +1)

= (r+a)(r-a)(r+@)(x-a).

Note that o? = i and 2(a + @) = V2. So the splitting field of z* + 1 over Q is

Q(a, —a,@,-a) = Q(V2,1). .
Find the splitting field of 24 + 22+ 1 = (22 + x + 1)(2?2 -z + 1) over Q.

Proof. Q(v/3i). [ |

Let a,b e R with b# 0. Show that R(a + bi) = C.

Proof. [ ]
Find a polynomial p(z) in Q[z] such that Q(v/1 +/5) is ring-isomorphic to Q[z]/{p(z)).

163



20.8

Proof. Let a=+/1 V5.

a = 1+v5
a® = 1+vV5

-1 = V5
(a?-1)? =
at-2a%+1 =

at-2a%-4 =

o ot ot

Let p(z) = 2* - 222 = 4. Then p(\/1++/5) = 0. We show that p(z) is monic and
irreducible over Q. Then p(z) is the minimal polynomial of v/1++/5 over Q and
Qlz]/{p(z)) = Q(V1 +V5).

There are four methods that you can try.

(i) Eisenstein’s Criterion.

(i) If f(z+a) is irreducible over Q, then f(z) is irreducible over Q.

(iii) Mod p Irreducibility Test.

(iv) Reducibility over Q Implies Reducibility over Z.

I use the method (iv). Since p(x) has no roots in Q, p(z) has no linear factor in
Q[].

If p(z) is reducible in Q[z], then by (iv), p(z) is reducible over Z. Since p(z) is
monic, suppose that p(z) = (22 + ax + b)(2? + cx + d), where a,b,c,d € Z. Then

p(z) =a*-222 —4 =2+ (a+c)z® + (b+ac+d)x® + (bc + ad)x + bd.
Compare the coefficients,

r +(a+c)r® +(b+ac+d)x? +(bc+ad)r +bd

! ! ! ! !

4 +023 —22 +0z -4
We have
a+c = 0
b+ac+d = -2
bc+ad = 0
bd = -4.

By a+c¢ =0, we have ¢ = —a. Then 0 =bc+ad =—-ab+ad=a(d-b). If b—d =0, then
bd = b? = -4, it is impossible. Hence, a =0. Then ¢=0 and b+ac+d=b+d = -2
and bd = —4. It follows that b(-2 - b) = =4 and b= -1 +/5, it is impossible. There

are no such a,b,c and d in Z satisfy these equations and p(x) is irreducible over Z

and Q. [
Let F' = Zy and let f(x) =23 +x+ 1 € F[z]. Suppose that a is a zero of f(x) in

some extension of F'. How many elements does F'(a) have? Express each member
of F(a) in terms of a. Write out a complete multiplication table or F'(a).
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20.9

20.10

20.11

20.12

Proof. Lemma. Let f(z) € F[z] and deg f(z) € {2,3}. Then f(x) is irreducible
over F'if and only if f(z) has no roots in F.

Since f(x) has no root in Zy and deg f(x) = 3, f(x) is irreducible over Z,. Then
Zo[x]/(f(x)) 2 Zs(a) = {aza® + a1a+ag | as, a1, a0 € Zy} and Zs(a) is a finite field of
order 23 = 8. Note that a® = —a -1 =a+ 1. The multiplication table of Zy(a) is

0 1 a a+1 a2 a?+1 a?+a aZ+a+1
0 0 0 0 0 0 0 0 0
1 0 1 a a+1 a? a?+1 a?+a a*+a+1
a 0 a a? a?+a a+1 1 a?+a+1 a?+1
a+1 0 a+1 a2 +a a?+1 a?+a+1 a? 1 a
a? 0 a? a+1 a?+a+1 a?+a a a’+1 1
a?+1 0 a?+1 1 a? a a?+a+1 a+1 az+a
a’+a |0 a?*+a a’+a+1 1 a?+1 a+1 a a?
a?+a+1[0 a?+a+1 a?+1 a 1 az+a a2 a+1
||

Let F(a) be the field described in Exercise 8. Express each of a®, a=2, and a!'® in
the form cya? + cia + ¢p.

Proof. a®=a-a?>=(a+1)-a>=a*+a*>=(a+1)+a?=a’+a+1.

Since Zs(a) is a finite field of order 8, Zy(a) — {0} is a finite multiplicative group of
order 7. By Lagrange’s Theorem, the multiplicative order of a nonidentity element
in Zy(a) - {0} is 7. Therefore, a” = 1.

Then a2=a?2-1=a2-a"=a® and a'? = (a")*-a? = a®. [

Let F'(a) be the field described in Exercise 8. Show that a? and a? + a are zeros of
rr+l.

Proof. [ ]
Describe the elements in Q(7).

Proof. {12 | f(x) ¢ Q[z], g(x) # 0 € QLx]}. .
Let F'=Q(7?). Find a basis for F'(7) over F.

Proof. Note that 7 is algebraic over Q(7?) with minimal polynomial 23 -3 (why?).
Thus, Q(73)[x]/{x? - 73) 2 Q(x3)(7w) and {1,7, 72} is a basis for Q(73)(7w) over
Q(7?).

Q(m*)[x] R




20.13 Write 27 — x as a product of linear factors over Zs. Do the same for 10 - z.

Proof.

" -z = x(2®-1)
= a(z®-1)(2* +1)
= o(z-1)(2*-a+1)(z-1)(z*+2+1)
= 2(z-1)(2*+22+1)(x-1)(z* - 22 +1)
= 2(z-D(z+1)*(z-1)(z-1)?
= a(z-1)*(x+1)2

20—z = 2(2°-1

)
= a(2®-1)(a%+ 23 +1)
= x(z®-1)(2%-22%+1)
= x(z*-1)>*
= z2[(z-1)(2*+z+1)]?
= of(x-1)(2*-22+1)]?
= o@D - 1P
= x(z-1)°

20.14 Find all ring automorphisms of Q(/5).

20.15%

Proof. The minimal polynomial of /5 over Q is f(x) = #3-5. Let E be the splitting
field for f(z) over Q. Then f(z) = (23-5) = (z - V/5) (v - V/5&) (v - V/5€2) € E[z],
where &3 = cos %” +isin %’r

If § is an automorhphism on Q(3/5) and 7 € Q, then A(r) = 7.

Note that f(8(V/5)) = 6(f(¥/5)) = #(0) = 0. That is, #(3/5) is also a root of
f(z). Thus, 0(/5) € {5, V53, 52} But /55 and /5£2 are not in Q(\/_)

Therefore, 6(\/_ ) = /5. 6 must be the identity mapping.

Let F be a field of characteristic p and let f(x) =2P —a € F[x]. Show that f(x) is
irreducible over F' or f(z) splits in F.

Proof. [J3i&—] Let E be the splitting field of f(z) over F' and let r be a root of
f(z)in E. Then f(r)=r?—a=0and r?» =q and f(z)=aP-a=aP —rP = (x —r)P
by char F' = p and Freshman’s Dream.

Case L: If r € F', then f(z) = (xz—r)P splits in F[z].

Case II: If r ¢ F. Since F[z] is a UFD and f(z) is monic, suppose that f(z) =
g1(x)ga(x)-+-gn(2), where g;(x) is irreducible and monic in F[x] foreachi=1,2,...,n
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In addition, degg;(z) > 2 for each i = 1,2,...,n. For if degg;(x) = 1, then g;(z) =

(r—s) e F[x] and s € F is a root of f(x). Which is the Case 1.

Then we have f(z) = g1(x)go(x)--gn(x) = (z —7)P. For each i = 1,2,...,n, since
degg;(x) > 2, it follows that g;(x) has multiple root in E. Recall that g;(x) is
irreducible over F'; by Theorem 20.6, g;(x) = h;(zP) for some h;(z) € F[x]. Then
f(x) = 2P —a = hy(zP)ha(xP)---h,(2P). Compare the degree of this equation, it
must be deghy(z) =1 and hy(z), hs(z),...,h,(z) all are constant. It follows that
02(z) = gs(2) = = = gu(a) = 1 and g1(z) = f(z). Therefore, f(z) = gy(x) is
irreducible over F'.

737 Consider the splitting field F for f(x) over F. By Theorem 20.9, there are
three possible factorizations of f(z) in E[z].

(i) f(z) = (x =r1)(x —12)--(x —1p), where r; =7, if 1 # j.

(ii) f(z)=(z—-r1)*(x—ry)*(x -1, where s > 2, t > 2.

(i) /() = (- ).

Since f'(x) =0, we have ged (f(x), f'(x)) = f(x) # 1, the case (i) is impossible by
Theorem 20.5. Since p is a prime, the case (ii) is impossible because p = deg f(z) =
s-t. The remaining possible is f(z) = (z —r)P € E[x].

Since r is a root of f(x) over F', the minimal polynomial m,(x) of r over F' divides

f(x)=2ar-a.

my(x) | f(x) = (2" - a) in Flx]

= mp(z) | f(z) = (z-r)"in Elz]
= m,(z)=(zx-r)?in E[z] for some ¢<p
If g=p

= f(z) =m,(x) € F[z] is irreducible over F'

If g<p
= m,(x) = (z-7)= (g)xq N qu-l + (g)(—r)qu—l.. N (q a 1)(—7‘)q_1$ + (Z)(—r)q ¢ Fla
Z ;(eajz (z —r)P splits in F[z].

7. http://math.stackexchange.com/questions/760538/let-f-be-a-field-of-characte

20.16* Suppose that 3 is a zero of f(x) =2z*+x +1 in some extension field E of Z,. Write
f(x) as a product of linear factors in E[z].

Proof. f(x) = (x-B)[z-(6+1)](z-p*)[z-(B*+1)]. u
78, If f(x) is irreducible over Z, and a is a root of f(z) in the extension field
Z,(a) = Z,[x]/{f(x)) of Z,, then a?, aP®, a?’, ... are also roots of f(x).

Proof. Since Z,—{0} is a finite group under multiplication, by Lagrange’s Theorem,

s times
——

for all g € Z, - {0}, gP"! = 1. Thus, g* = g and g*" = ((97)P)" )P = g.

In addition, recall that if char K =p, then (u + v)? = u? + vP for every u,v € K.
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If f(z)=apx"+ap 12"+ +a1x + ap and f(a) =0, then
f(aps) = an(aps )n + an—l(a’ps )n—l +et CLlaps +ag

2 a (a” )+ al (a” )" v vl
S

= a? (@) +a”  (a" )+ +a a” +al

1

_ s
= (apa”™ + ap_1a™ " + -+ ara+ag)?

= 0

20.17 Find a,b,c in Q such that (1+ \3/4_1)/(2— \3/5) =a+b¥/2+c¥/4. Note that such a,b,c
exist, since (1+V/4)/(2-/2) e Q(V/2) = {a+ b2+ cV/4 ] a,b,c€Q}.

20.18 Express (3 +4v/2)7! in the form a + bv/2, where a,b € Q.

1 (4v2-3) _4/2-3 _ -3, 4
Proof. 557 = (Va2+3)(ava3) 329 3T 5V2 "

20.19 Show that Q(4 -1i) = Q(1 + 1), where i = /-1.

20.20 Let F be a field, and let a and b belong to F' with a # 0. If ¢ belongs to some
extension of F', prove th F'(c) = F(ac+b). (F “absorbs” its own elements.)

20.21 Let f(x) € F[z] and let a € F'. Show that f(x) and f(z+a) have the same splitting
field over F.

Proof. Suppose that f(x) = (z—c;1)" (x—co)"2---(x—c5)" in E[z] for some extension
field E of F. Then f(z+a)=(x+a—-c1)""(x+a—-co)™(x+a—c,)™ splits in E[z].
Conversely, suppose that f(x+a) = (x—c1)" (- co)™(x —¢s)" in E[x] for some
extension field E of F. Then f(z)=(z-a—-c1)"(z—a—-cy)™(x —a—cs)" splits
in Flz]. [

20.22 Recall that two polynomial f(z) and g(z) from F[z] are said to be relatively prime
if there is no polynomial of positive degree in F[z] that divides both f(x) and g(z).
Show that if f(z) and g(x) are relatively prime in F[z], they are relatively prime
in K[z], where K is any extension of F.

Proof. Consider the principal ideals (f(z)) and (g(z)) generated by f(z) and g(z),
respectively. Recall that the sum of two ideals I and J is defined by

I+J={i+jliel,jeJ}.

Which is also an ideal. Since F[z] is a P.I.D., (f(z)) + (g(z)) = (h(z)). We have
that

ged (f(x),g(x)) =h(x) < (f(z))+(g9(x)) = (h(x)), where h(zx) is monic.
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Therefore,

ged (f(2),9(x)) =1 in Flz]
(f(2))+(g(2)) = (1) in Flz]
there exists a(z),b(x) € F[x] such that f(z)a(z) + g(z)b(z) =1€ F[x]

V4

o
In
=

there exists a(z),b(x) € K[z] such that f(z)a(z) + g(z)b(z)=1¢€ K[x]
(f(@)) + (g(x)) = (1) in K[x]
ged (f(2),9(x)) =1 in K[x]

VU

Another method see p.225 in Herstein’s Algebra. [ ]
20.23 Determine all of the subfields of Q(v/2).

Proof. Suppose that F is a subfield of Q(v/2). Consider the tower of fields

Q<F<Q(V2).

[F: Q] divides [Q(v/2): Q] =2. If [F: Q] = 1, then F = Q. If [F: Q] = 2, then
[Q(V2): F]=1and F =Q(+/2). All the subfields of Q(+/2) are Q and Q(+/2). =

20.24 Let E be an extension of F' and let a and b belong to E. Prove that F(a,b) =
F(a)(b) = F(b)(a).

20.25 Write 22 +2x + 1 as a product of linear polynomials over some extension field of Zs.

Proof. Since 23 + 2z + 1 has no root in Z3 and deg (23 +2z+1) = 3, 23+ 2z + 1
is irreducible over Zs;. Let o« be the root of z? + 2z + 1 in the extension field
Zs[x][{x3 + 22 + 1) 2 Zs(«) of Zs.

2 +axr +(2+a?)

T - ) 3 +2x +1
3 —ax?
ax? +2x
ax? -’z
(2+a?)x +1

2+a?)r —-(2a+a?)
1+2a+a® =0

r +(2a+1)
r-(a+1) ) x? +ax +(2+a?)
2 —(a+1x
2a+ 1)z +(a?+2)
2a+1)x —(a+1)(2a+1)
a?+2+2a?+2a+a+1 =0
B+2r+l=(r-a)(z-(a+1))(xz+(2a+1)). u
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20.26

20.27

20.28

20.29

20.30

20.31
20.32

20.33

Express 2% — x as a product of irreducibles over Z,.

Proof. Lemma. Let f(x) € F[x] and deg f(x) € {2,3}. Then f(x) is irreducible
over F'if and only if f(z) has no roots in F.

Use the lemma. The monic irreducible polynomial of degree 2 in Zy[x] is 2% +x + 1.
The monic irreducible polynomials of degree 3 in Zs[z] are 23 +xz+1 and a3+ 22+ 1.

®-x = x(z"-1)

4

= 2(z-D)(2b+2°+at+23+ 2P+ 2+ 1)

w(z-1)(2®+z+1) (2% + 22 +1).

Prove or disprove that Q(v/3) and Q(v/-3) are ring-isomorphic.

Proof. Suppose 6 : Q(v/3) - Q(v/=3) is an isomorphism and 0(v/3) = a + bv/-3,
where a,b € Q.

Note that if r € Q, then §(r) = r. Therefore, if b =0, then 6 is not onto. Thus, b # 0.

3=0(3) = 0((v/3)?) = (A(V3))? = (a + bW/=3)? = a? - 3b% + 2ab\/-3, where a,b € (Q)

This equation has no solution.

For any prime p, find a field of characteristic p that is not perfect.

Proof. By Exercise 20.39. [ ]
If 3 is a zero of 2% + x + 2 over Zs, find the other zero.

Proof.
x +(1+p5)
x-f ) x? +T +2
2 —fx
(1+p8)x +2
(1+p8)x -p(1L+p)
2+5+6%2 =0
—(1+p) is another root of 22+ x +2 in the extension field Zs[x]/(z?+x +2) = Z5(5)
of Z5.

Show that x4+ 2+ 1 over Zy does not have any multiple zeros in any extension field
of ZQ.

Show that x2! + 228 + 1 does not have multiple zeros in any extension of Zs.
Show that 22! + 229 + 1 has multiple zeros in some extension of Zs.
Let F be a field of characteristic p # 0. Show that the polynomial f(z) = 2" -z

over F' has distinct zeros.
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20.34*

20.35

20.37*

Proof.

char F=p#0

ged (f(2), f'(z)) = ged (2" =z, p"a?" ' =1) £ ged (2" —z,-1) = 1.

Find the splitting field for f(x) = (22 + x + 2)(2? + 2x + 2) over Zs[x]. Write f(x)
as product of linear factors.

Proof. (2?2 +x+2) and (2% + 22 +2) both are irreducible over Z3. Let a be the root
of 2 + x + 2 in the extension field Zs[x]/(2? + x + 2) 2 Zs(«) of Zs.

r +(1+a)

T - ) 2 +x +2

72

(I;O‘(f)x +2
(1+a)r —(a+a?)

2+a+a? =0

Note that 2« is a root of (22 + 2z + 2).

r +(2+2a)
T -2« ) 2 +2 +2
2 20
(2+2a)x +2

(2+2a)r —20(2+2)
2+4a+4a? =0

flx)y=(-a)(z+(1+a))(r-2a)(x+(2+2a)). u

Let F be a field and E an extension field of F' that contains aq,as,...,a,. Prove
that F'(ai,as,...,a,) is the intersection of all subfields of E that contain F' and the
set {ai,ag,...,a,}.

Proof. It F' < K and {ay,as, ...,a,} € K, then F(ay,as,...,a,) < K and

F(ay,as,...,a,) < N L.

F<L
{al yA2500es an }EL

N L < F(ay,as,...,a,) is obviously because F'(aq,as, ..., a,) is one of such
F<L
{a17a‘2 7777 a‘n}gL

L. ]

Suppose that f(z) is a fifth-degree polynomial that is irreducible over Z,. Prove
that every nonidentity element is a generator of the cyclic group (Zs[x]/{f(z)))*.

Proof. Note that (Za[z]/(f(2)))* = Zs[x]/{f(z)) - {0} is a finite group under mul-
tiplication. The order of this group is 2° - 1 = 31. By Lagrange’s Theorem, the
order of every nonidentity element in this group is 31. That is, every nonidentity
element is a generator of this cyclic group. [ ]
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20.38 Show that Q(/7,4) is the splitting field for 24 — 622 - 7.

Proof.
vt -622-7 = 2t -T2%-7
= 2*(2®+1)-7(2* +1)
= (22 -T)(z*+1)
= (z-V)(x+VT)(z+i)(z-1).
Hence, Q(+/7,1) is the splitting field for z* - 622 - 7 over Q. [ ]
7. WRBEEK degree,

Since 2 — 7 has no root in Q and degz? -7 =2, 22 — 7 is irreducible over Q and it
is the minimal of \/7 over Q. Thus, [Q(\/7): Q] = deg (22 -T7) = 2.

Since 22 + 1 has no root in Q(v/7) because the elements in Q(1/7) all are real
numbers. x2 + 1 is irreducible over Q(+/7) and it is the minimal of i over Q(+/7).

Thus, [Q(VT7)(1) : Q(VT)] = deg (22 +1) = 2.

20.39 Let p be a prime, F' = 7Z,(t) (the field of quotients of the ring Z,[z]), and f(z) = 2P -
t. Prove that f(x) is irreducible over F' and has a multiple zero in K = F[z]/{xP-t).

Proof. By Exercise 20.15, f(«) splits in F[z] or irreducible over F'.

If f(z) splits in F[z]
9(t)

= f(z) has a root h(t) €eF
g\ _,_

- (i) -0

= [g®)]=t-[()]

Y

pldeg[g(t)]P =degt[h(t)]" =1+deg[h(t)]",
which is a contradiction.

= f(x) is irreducible over F.
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20.40

T 20.A

Since f’(x) =0, we have ged (f(x), f'(z)) = f(z) # 1 and f(x) has multiple zero by
Theorem 20.5.

Furthermore, consider f(y) =y? -t e K[y] = (F[x]/{zP - t))[y]. Then
fy)=y’-t=y"—a?=(y-) i)yxp

Let g(y) = X0 ytaP~. Then g(z) = pxP = 0 because the characteristic of K is p.
Thus, f(y) has multiple zero z in K = F[x]/(z? - t). [

7. EEYHY the field of quotients of the ring Z,[z] FEZE the field of quotients
of the ring Z,[t]o

Let f(x) be an irreducible polynomial over a field F. Prove that the number of
distinct zeros of f(x) in a splitting field divides deg f(x).

Proof. Tt follows immediately from the Corollary in p.372. [ ]

Let o = V2 + /3. What is the minimal polynomial of o over Q7 Show further that

Q(e) = Q(v2,V3).
Proof.

a = V2+V3
a? = 2+3+2V6
a?-5 = 2\/6

(a®*-5)? = 24
a*-10a%2+25 = 24
a*=10a2+1 = 0.

Let p(x) = 2% - 1022 + 1. Then p(v/2 +/3) = 0. We show that p(z) is monic and
irreducible over Q. Then p(z) is the minimal polynomial of v/2 + /3 over Q.

Since the roots of p(z) all are not real numbers, p(x) has no roots in Q and p(z)
has no linear factor in Q[z].

If p(x) is reducible in Q[x], then p(x) is reducible over Z. Since p(x) is monic,
suppose that p(x) = (22 + ax + b)(2? + cx + d), where a,b,¢,d € Z. Then

p(z) =2* - 1022 + 1 =2* + (a + ¢)2® + (b + ac + d)x* + (bc + ad)x + bd.
Compare the coefficients,
r +(a+c)r® +(b+ac+d)x? +(bc+ad)r +bd

! ! ! ! !

4 +023 -1022 +0z +1
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We have

a+c = 0
b+ac+d = -10
bc+ad = 0

bd = 1.

By a+c¢ =0, we have ¢ = —a. Then 0 =bc+ad = -ab+ad =a(d-b). If b—d =0, then
bd=0b*>=1and b=d=+1. It follows that b+ac+d=-a?>+2=-10 and —a? = -10+ 2.
Which is impossible. Hence, a =0. Then ¢=0 and b+ac+d=0+d =-10 and bd = 1.
It follows that b(=10 - b) = 1 and b= -5 + 21/6, it is impossible. There are no such
a,b,c and d in Z satisfy these equations and p(z) is irreducible over Z and Q.

Furthermore, since v/2 + /3 € Q(\/§7 \/§), Q(\/§+ \/§) c Q(\/§, \/5) is obviously.
On the other hand, since v/3 - /2 = m = (V2+v3) 1 eQ(v/2+3), we have

f:<ﬁ1ﬁ)+2(ﬁ+ﬁ)e@(ﬂ+ﬁ)
and
5D
Therefore, Q(v/2,v/3) € Q(v2 +V/3). m

21 Chapter 21

Minimal Polynomial
21.14, 21.16, 21.10, 21.13

Finite Extension = Algebraic Extension
21.18, 21.22

Computation in Field Extension
21.25, 21.24

Algebraically Closed and Algebraic Closure
21.2, 21.5, thm.21.5, 21.4, Foote, p.541, exa, 21.17

If F <L and ce L is algebraic over F. Let mp(x) be the minimal polynomial of
c over F. Then [F(c): F] = degmpg(x). Suppose that K < L is any extension of
F. Note that my(x) does not necessarily be the minimal polynomial of ¢ over K.
We can view mp(x) € F[z] as a polynomial in K[z] which has ¢ as a root. So, ¢ is
algebraic over K. Let my(x) be the minimal polynomial of ¢ over K. Then

mp(x)eK([z], mp(c)=0

[K(c): K] = degmy(x) < degmp(x) = [F(c) : F].
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21.2

21.3

214

21.5

Let E be the algebraic closure of F. Show that every polynomial in F[z] splits in
E.

Proof. By the definition of the algebraic closure of F', F is algebraically closed.
Thus, every polynomial in E[z] splits in E. [

Prove that Q(\/i, Y2, /2, ...) is an algebraic extension of @Q but not a finite exten-
sion of Q.

Proof. Let A ={aeC|a is algebraic over Q}. Then A is an algebraic extension of
Q. Since v/2,/2,+/2,... all are algebraic over Q, we have Q < Q(\/2,V/2,V/2,...) <
A. Therefore, Q(v/2,3/2,/2,...) is an algebraic extension of Q.

If [Q(V2,¥/2,v/2,...) : Q] = n is finite, then there exists "</2 such that

n

Q < Q("V2)<Q(V2,V2,V2,..),

n+1

a contradiction. [}

Let E be an algebraic extension of F. If every polynomial in F'[x] splits in E, show
that E is algebraically closed.

Proof. Suppose that E is not algebraically closed. Then there exists a polynomial
f(x) € E[x] which is irreducible over FE and deg f(z) > 2. Let « ¢ E be a root of
f(x) in the extension field F(«) 2 E[z]/(f(x)) of E.

Suppose that f(z) = a,z"+--+ajx+ag € E[x]. Since F is an algebraic extension of
F, ay,...,a1,aq all are algebraic over F'. Then by Exercise 21.20, F(a,, ...,a1,ay) is
a finite extension of F. Now, f(x) € F(ap,...,a1,a0)[z] and « is a root of f(z), we
have « is algebraic over F(ay,, ...,a1,a0) and F(ay,, ...,a1,aq)(«) is an finite extension
of F(ay,...,a1,a0) by Exercise 21.20 again. Then we have a tower of fields

F < F(ap,...,a1,a9) <
— —

<oo <oo

F(ap,...,a1,a0) ().

It follows that F'(ay,...,a1,a0)(«) is a finite extension of F' and « has the minimal
polynomial m(x) € F[z] because a finite extension must be an algebraic extension.
By the hypothesis, m(z) splits in E[x]. Suppose that m(z) = (x = by, ) (x=by)(z -
by) € E[x]. We know that « is a root of m(z), so a = b; for some i € {1,2,...,m}.
But which implies that a = b; € E, a contradiction. [

Suppose that F is a field and every irreducible polynomial in F[x] is linear. Show
that F' is algebraically closed.

fize. NEIE algebraic closure of F' B} algebraic closure of F in F fHiE7T, 2%
moodle FHIEER,

7. B algebraically closed IS EEZRE THIUE, GallianfyE, L2 IRFRIEE
AR ZEUE, A field K is called algebraically closed.
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21.6* Suppose that f(x) and g(x) are irreducible over F' and that deg f(x) and deg g(x)
are relatively prime. If a is a zero of f(x) in some extension of F', show that g(x)
is irreducible over F'(a).

Proof. [J3i&—] Note that f(z) is the minimal polynomial of a over F. Let b be
a root of g(z) in the extension field F(b) = F[z]/{g(z)) of F. Then [F(a): F] =
giglji(x) and [F(b) : F] =degg(z) and ged ([F(a) : F],[F(b) : F]) = 1. By Exercise
[F(a,b): F]=[F(a): F]-[F(b):F]
~ [F(a,8): F(0)]- [F(@)~F] - [F(@)<FT- [F(5) : F]
= [F(a,b): F(a)]=[F(b): F]=degg(z)
= ¢g(x) is irreducible over F'(a).

[737&Z] Let a be a root of p(z) in some extension E(a) of E. Although p(x) is
not necessarily the minimal polynomial of a over E, but we know that [E(a) : F] <
degp(z). Thus, we have the tower of fields
[E(a):F]

< E < Ea)
[E:F]  <degp(x)
and [E(a): F] <degp(z)[E: F].
Consider the tower of fields

F

E(a)

£degp(y \
FE

F(a)

[E:R A@:)
F

We have
degp(z) = [F(a) : F][[E(a): F]
and [E:F]|[E(a): F]
gcd(degp(T)T[E:F]Fl
= degp()[E: F]|[E(a) : F]
[E(u)=E]£d<igp(w)[E=F]
= [E(a) : F] = degp(z)[E: F]
= [E(a):E]= % = degp(x)
= p(x) is irreducible over E.
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21.7 Let a and b belong to Q with b# 0. Show that Q(v/a) = Q(\/b) if and only if there
exists some c € Q such that a = bc2.

Proof. (<) If a = be? for some ¢ € Q, then \/a = Vbc? = Vb|c| and Q(v/a) € Q(\/b).
Since ¢ # 0, we have v/ = %% and Q(v/b) € Q(\/a).

lel

(=) If Va € Q, then Q(+v/b) = Q(v/a) = Q and Vb € Q. Tt follows that \/7§ = ¢ for
some ¢ € Q and a = be2. We assume that \/a and /b both are not in Q.

Q(va) = Q(Vb)

= \/a=d+0\/gf01" some d,ceQ,c#0
= a=d®+cb+2bcVb

if d#0
_d2— 2
= Vb= a7 en. Q, a contradiction
2dc
= d=0
= JVa=cVb
= a=bc.

e, EEEKFE M c# 0 EEGEN, TRIE c=0, b=2 KILEN (<) THIL

21.8* Find the degree and a basis for Q(v/3 + V/5) over Q(v/15). Find the degree and a
basis for Q(v/2, ¥/2, v/2) over Q.

Proof.

e Show that Q(\/§+ \/3) = @(\/g, \/5), see Exercise 20.2 and Exercise 21.35.

e Show that Q(v/3,V/15) = Q(v/3,/5)

e Show that /5 ¢ Q(v/3). Suppose that /5 = a+bv/3 € Q(+/3) for some a,b € Q.
If a =0, then b = \/g ¢ Q, a contradiction. If b = 0, then /5 = a € Q,
a contradiction. Thus, a # 0 and b # 0. Then 5 = a2 + 2abv/3 + 3b? and

—a2-3p2 ..
V3= =223 ¢ Q, a contradiction.
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e Then we have

V5 ¢Q(V3)
= 2? -5 has no root in Q(v/3)

deg (22—5):2

X 2? - 5 is irreducible over Q(V/3)
= 2? -5 is the minimal polynomial of V/5 over Q(v/3)
= [Q(V3,v5):Q(V3)] =2
?
=

Q< Q(V3) £ Q(V3,V5)

= Q< Q(V15) < Q(V15,V3) =Q(V3,V5).

e Therefore, {1,V/3} is a basis for Q(v/3+v/5) = Q(v/3,v/5) = Q(v/15,1/3) over
Q(V15).

We prove the second part of the question. The method is the same as which we use
in Exercise 21.34.

Show that Q(v/2, V2, v2) = Q(V/2, v/2).
Show that /2 ¢ Q(v/2). If ¥/2 € Q(v/2), then

4

Q< Q(V2)<Q(V3).

e Show that 23 — 2 has no root in @((1/5)

2% — 2 has no root in Q(+/2)
deg(wf—2):3

= 2® - 2 is irreducible over Q(+/2)
= [Q(V2,V2):Q(V2)] = deg (+* - 2) =3

Then we have

Q< Q(V2) £ Q(V2,V2).

3
{ablae{1,v/2,V4,V8},be{1,V2,V4}} is a basis for Q(v/2, ¥/2) over Q.

21.9 Suppose that E is an extension of F' of prime degree. Show that, for every a in F,
F(a)=F or F(a)=FE.
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Proof. Consider the tower of fields

p
—

F<F(a)<E.

[F(a): F] divides [E: F]=p. If [F(a) : F] =1, then F(a) = F. If [F(a): F] = p,
then [E: F(a)] =1 and F(a) = E. n

21.10 Let a be a complex number that is algebraic over Q. Show that \/a is algebraic
over Q. Why does this prove that %X/a is algebraic over Q.

Proof. Since a is algebraic over Q, let f(x) be a nonzero polynomial in Q[x] such
that f(a) =0. Then y/a is a root of the polynomial f(22?) € Q[x] and %/a is a root
of the polynomial f(z?") € Q[z]. u

21.11* Suppose that F is an extension of F' and a,b € E. If a is algebraic over F' of degree
m, and b is algebraic over F' of degree n, where m and n are relatively prime, show
that [F'(a,b) : F] =mn.

Proof. Consider the towers of fields
F<F(a)<F(a,b)

and
F<F(b) < F(a,b).

[F(a): F]|[F(a,b): F]=[F(a,b): F()]-[F(b):F]

ged ([F(a):FL,[F(b):F])=1

2 [F(a): F]|[F(a,b): F(b)] = [K(a) : K], where K = F(b)
[K (a):K]<[F(a):F]
= [F(a): F]=[K(a): K]=[F(a,b): F(b)]
multiplying [F(b):F]
X mn=[F(a): F][F(b): F]=[F(a,b): F(b)][F(b): F]=[F(a,b):F].
||

21.12* Find an example of a field F' and elements a and b from some extension field such
that F'(a,b) # F'(a), F(a,b) # F(b), and [F(a,b): F] < [F(a): F][F(b): F].

Proof. Since V/2 is a root of the polynomial 23 — (v/2)2 over Q(v/2), let m(x) be
the minimal polynomial of /2 over Q(~/2). Then we have [Q(~/2,V/2) : Q(+/2)]
degm(z) < deg (23— (3/2)2) = 3. Consider the tower of fields
Q< Q(V2) S CEA))
4

<deg (z3-(/2)2)=3

In this case, [Q(v/2,Vv/2): Q] <4-3<4-6=[Q(v2):Q]-[Q(V/2):Q]. [ |

21.13* Let K be a field extension of F' and let a € K. Show that [F(a): F(a®)] < 3. Find
examples to illustrate that [F'(a) : F(a?)] can be 1,2, or 3.
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21.14

21.15

Proof. Since a is a root of the polynomial z3 — a3 over F(a?), [F(a) : F(a?)] <
deg 3 —a3 = 3.

Let a€ F. Then [F(a): F(a®)] =1.

Let F =Q, a=+/2 Then [F(a): F(a®)] =3. A slightly complicate example is

given by
6

Q< Q(v2) £ Q(V2)

Let F'=Q and a = &3, where = cos 2{ +18in 2% Then the minimal polynomial of a
over Qis 22+ x +1 (not 23 - 1) and we have

Q £ Q) £ Q(a).

1 2

Find the minimal polynomial for /=3 +v/2 over Q.

Proof.
r = V-3+V2
2?2 = (-3)+2V-6+2
?+1 = 2V-6

(z2+1)* = -24
2 +22%2+1 = -24
2 +222+25 = 0.

Let f(x) =x*+ 222+ 25. Prove that f(z) is irreducible over Q. Then f(x) is the
minimal polynomial of /-3 + /2 over Q. [ ]

Let K be an extension of F. Suppose that F; and F, are contained in K and are
extensions of F. If [E; : F'] and [E, : F'] are both prime, show that E; = Ey or
E1 n E2 =F.

Proof. Consider the tower of fields

p

FSElﬂEQSEl.

[ElﬂEgiF] divides [ElF]:p If[ElﬂEQIF]:l, thenF:ElﬂEg.

If [ElﬁEgiF] =D, then [EliElﬁEg] =1land EsnFEy=FE; and E; € E,. In this
case, consider the tower of fields

p
FSElﬁEQSEQ.

p

We get [Ey: EynEy] =1 and Ey = By n Ey and Fy € Ey. Therefore, Ey = Es. [ ]

180



21.16 Find the minimal polynomial for Y2+ ¥/4 over Q.

21.17 Let E be a finite extension of R. Use the fact that C is algebraically closed to prove
that £ =C or F =R.

21.18 Suppose that [E : Q] = 2. Show that there is an integer d such that E = Q(v/d)
where d is not divisible by the square of any prime.

Proof. [J3i&—]

(£:Q] -2
= Q < E is finite extension
= Q < F is algebraic extension

[E:Q)-2, E+Q
2 select a € F,a ¢ Q,a is algebraic over

2
/—/—

= Q<Q(a)<E
#1

= [Q(a):Q]=2and E=Q(a)

= let 22 + bx + ¢ be the minimal polynomial of a over Q
N b+ Vb2 —4dac -bteVd
a = =
2 2

=  E=Q(a)=Q(Vd).

55T
[£:Q]=2<00
Theorem 21.4
= Q # FE is an algebraic extension of Q
select ae€eF anda¢Q
= a is algebraic over
let m(z) be the minimal polynomial of a over Q

= [Q(a): Q] = degm(x)

since a¢Q

= [Qa):Q]#1

>  Q<Q)<E
2

= degm(z) =[Q(a): Q] =2 and [E:Q(a)] =1
suppose m(x) = 2% —d e Q[x]

= m(a)=a*-d=0

=  a=xVd

= E=Qa)=Q(Vd).
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21.19

21.20

Suppose that p(z) € F[x] and E is a finite extension of F. If p(x) is irreducible
over F', and degp(z) and [E : F'] are relatively prime, show that p(x) is irreducible
over F.

Proof. Since F < E, we can view p(x) € F[x] as a polynomial in E[z]. By Kro-
necker’s Theorem (Theorem 20.1), p(z) has a root a in some extension field L of E.
Let m(x) be the minimal polynomial of a over E. Then [E(a) : E] = degm(x) <
degp(z). Then we have the tower of fields

[E(a):F]

F < F <
— ——;

[E:F]  [E(a):El<degp(z)

E(a).

On the other hand, note that p(x) is the minimal polynomial of a over F. Hence,
[F(a): F]=degp(x). Consider the tower of fields

[E(a):F]
F < F(a)<E(a).
degp(z)
Then
degp(x) | [E(a): F]=[E:F]-[E(a): E]
gcd(dcgp(ﬂf)»[EF]):l
= degp(z) | [E(a) : E]
[E(a)=E]fdegp(w)
= degp(z) = [E(a): E]
= p(x) is irreducible over E.
[
Let E be an extension field of F'. Show that [E : F'] is finite if and only if £ =

F(ay,as,...,a,), where ay,as, ..., a, are algebraic over F'.

Proof. (=) Suppose that dimg E = [E : F'] =n. Let {ay,as,...,a,} be a basis for
the vector space E over F. Then E = F(aq,as,...,a,). Since a finite extension of F’
must be a algebraice extension, F is an algebraic extension of F' and aq,as, ..., a,
are algebraic over F'.

(<) Since a; is algebraic over F', let m;(z) be the minimal polynomial of a; over F.
Recall that for each 7 =1,2,...,n,

[F(ay,ag,....,a;): F(ay,az,...,a;-1)] < [F(a;) : F] =degm;(z), where ag =0.
Then
[F(ai,ag,...;a,): F] = [F(a1,as,...,a,): F(ay,a9,...,a,-1)]

X [F(al,ag,...,an_l):F(al,ag,...,an_g)]

X

[F(ay,az2) : Fa1)] x [F(a1) : F]
degmy(x) - degm,,_1(x)---degm(x) < oo

IN
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21.21 If o and [ are real numbers and o and [ are transcendental over Q, show that
either a8 or a+ 3 is also transcendental over Q.

Proof. Lemma: If u and v both are algebraic over F', then v + v and uv are also
algebraic over F'.

Proof of Lemma: Let f(z) and g(x) be the minimal polynomial of u and v over

F, respectively. Then
<deg f(z)-deg g(z)

F < F(u) < F(u,v).
— —
deg f(x) <deg g(x)

That is, F'(u,v) is a finite extension of F. (See Exercise 21.20.)

Consider two towers of fields,

<oo

F<F(u+v)<F(u,v).

<oo

F < F(uv) < F(u,v).

We have F'(u+v) and F'(uv) are finite extension of F. Hence, F'(u+v) and F'(uv)
are algebraic extension of F'. Therefore, u +v and uv are algebraic over F.

We use the ~ p <~ ¢ prove the original problem. If a8 and «a + § are algebraic over

Q, then by Lemma, (a—)? = (a+)?—4a/ is algebraic over Q. By Exercise 21.10,

(a— () is also algebraic over F' and « = w is algebraic over Q. [

21.22 Let f(z) be a nonconstant elements of F[z]. If a belongs to some extension of F
and f(a) is algebraic over F, prove that a is algebraic over F.

Proof. Since ais aroot of f(x)-f(a)over F(f(a)), [F(a): F(f(a))] <deg(f(x)- f(a)).

Then we have the tower of fields

< F(f(a))
——
<o <deg[f(z)-f(a)]

F

Hence, F'(a) is a finite extension field of F' and algebraic extension. It follows that
a is algebraic over F'. [ |

7. BEMATLAEEE, If f(a) is algebraic over F and g(f(a)) =0, then (gof)(a) =
0.

21.23 Let f(z) = ax? + bx + c € Q[x]. Find a primitive element for the splitting field for
f(z) over Q.

Proof. \/b? - 4dac. [

21.24 Find the splitting field for x4 - 22 - 2 over Zs.
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21.25

21.26

21.27

Proof. x* — 22 - 2 has no root in Zs, so x* — 22 — 2 has no linear factor in Zs[x].

Lemma. Suppose that deg f(x) € {2,3}, f(z) is irreducible over F if and only if
f(z) has no root in F.

You can list all monic polynomials of degree 2 in Zz[x]. They are

x? has root 0
2 +1 <«

x? +2 has root 1
2 4 has root 0

2  +x +1 hasroot 1
+r +2 <«
2 2 has root 1
22 +2z +1 has root 2
2 42 42 <«

The only monic irreducible polynomials of degree 2 in Zz[x] are 22 + 1,22 + x + 2
and x2 + 2z + 2.

Observe that x* — 22 -2 = (22)2+ 222+ 1 = (22 + 1)%2. Let a be a root of 22+ 1
in the extension field Zs[x]/{x% + 1) of Zs. Then (22 + 1) = (x - a)(z + a) and
=22 -2=[(z-a)(z+a)]? u

Let f(x) € F[x]. If deg f(z) =2 and a is a zero of f(x) in some extension of F
prove that F'(a) is the splitting field for f(xz) over F.

Proof. Suppose that f(x) = az? + a1 + ag.

asx  +(ay + aza)

T-a ) apx? +a,T +ag
a9 T2 —a9aT
(a1 + asa)x +ap
(a1 +azsa)xr  —a(ay —asa)

ap +ara+asa® =0

The splitting field for f(z) over F'is F(a, =*-2%) = F(a).

Let a be a complex zero of 22 + z + 1 over Q. Prove that Q(v/a) = Q(a).

Proof. Note that 23— 1= (z—-1)(22+z+1). If a =& = cos Z +isin 2 = -1 + 35,

3 3 2772
then, \/a = cos 2 +isin 2% = 1 + 3 and Q(a) = Q(v/3i) = Q(\/a). If a = €2, then
Va =&. We also have the same result. [ ]

If F is a field and the multiplicative group of nonzero elements of F' is cyclic, prove
that F' is finite.

Proof. Suppose that F' — {0} = {a,a? a?,...}. Since 1 € F' - {0}, we have a” =1 for
some r € N*. Thus, F'— {0} is finite. u
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21.28

21.29

21.30

21.31

21.32%

. EHEEHENR AR —EFEEFEENTHE, Suofi—B: If F is a finite field, then

the multiplicative group of nonzero elements of F' is cyclic.

Let a be a complex number that is algebraic over Q and let r be a rational number.
Show that a” is algebraic over Q.

i
suppose that there exists f(z) = ana™ + - + a1z + ao such that f(a) = 0. Then at
is a root of f(z) € Q[z]. Hence, at is algebraic over Q. Therefore, r = (at)® is
algebraic over Q. [ |

Proof. Suppose that r = 2, where s,t € Z and t > 0. Since a is algebraic over Q,

Prove that, if K is an extension field of F, then [K : F'] = n if and only if K is
isomorphic to F'™ as vector spaces.

Proof. Let {ki,ko,....,k,} be a basis for K over F. Let ¢; = (0,...,0,1,0,...,0) € F
with 1 in the ¢th position and 0 elsewhere. Consider a mapping 7' : K — F™ which
is defined by

T (Z flkz) = Z fiéi.
i=1 i=1
Then T is a bijective linear transformation.

Recall that any two vector spaces are isomorphic if they have the same dimension.

|
Let a be a positive real number and let n be an integer greater that 1. Prove or
disprove that [Q(a'/"): Q] = n.
Proof. Let a=4,n=2. Then [Q(4/2):Q]=1+2=n. n
Let a and b belong to some extension field of F' and let b be algebraic over F'. Prove

that [F'(a,b): F(a)] <[F(a,b): F].

Proof. Consider the tower of fields
F < F(a) < F(a,b).

Let f(x) and g(z) be irreducible polynomials over a field F' and let a and b belong
to some extension E of F. If a is a zero of f(z) and b is a zero of g(z), show that
f(x) is irreducible over F'(b) if and only if g(x) is irreducible over F'(a).

Proof. 1t is sufficient to prove one direction. See Exercise 21.6.

If f(z) is irreducible over F(b) = F < F(b) < F(a,b)
_degg(z)  =dog f(x)
= [F(a,0): F] =deg f(z)-degg(z)
deg f(z)-deg g(x)
= F < F(a)<F(a,b)
deg ()
= [F(a,b): F(a)] = degg(x)

185



21.33 Let 5 be a zero of f(z) = 2° + 2z + 4 (see Example 8 in Chapter 17). Show that
none of \/2, /2, v/2 belongs to Q(B).

Proof. 1f \/2 € Q(3), then consider the tower of fields

5

Q< Q(v2) < Q).

2

Which implies that 2|5, a contradiction. Thus, v/2 ¢ Q(3). [
21.34 Prove that Q(v/2, ¥/2) = Q(V/2).
Proof. [J3i&—]

V2¢Q(v2) = {a+bV2|a,beQ)
= 2® =2 has no root in Q(v/2)

deg (z3-2)e{2,3}
|

= 2® - 2 is irreducible over Q(v/2)

= 2® — 2 is the minimal polynomial of ¥/2 over @(\/5)
2 deg (z3-2)=3

- Q<02 < QW2 ¥R)
= [Q(V2,v/2):Q] =6

On the other hand, since v/2 = ({3/5)3 and /2 = (5/5)2, V2 and ¥/2 both are in
Q(V/2), we have a tower of fields and degree

Q< Q(V2,¥2) < Q(V2).
Which implies that [Q(V/2) : Q(v/2,V/2)] = 1 and Q(V/2) = Q(V2, V/2).
=)
o Q(V/2,V2) cQ(V?2) is obviously because /2 = (v/2)3 and /2 = (V/2)2.
o We show that ¥/2 ¢ Q(v2). If ¥/2 € Q(v/2), then

2

Q< Q(V2) <Q(V2)

and 3 | 2, a contradiction.

e All the root of z3 -2 in C are ¥/2, ¥/2¢; and \3/553%, where &3 = cos %" +18in %”
We already know that ¥/2 ¢ Q(\/i) /2¢5 and \3’/§§§ both are not real number.
Thus, they are not in Q(+/2). Hence, 23 — 2 has no root in Q(+/2).
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21.35

21.36

21.37

21.38

e Then

2® — 2 has no root in Q(v/2)
deg (1372)23

5N 2 — 2 is irreducible over Q(v/2)
> [Q(V2,V2):Q(V2)] = deg (+° - 2) = 3

e Then we have the tower of field
6

Q< Q(V2) £ Q(V2,V2) £ Q(V2).

It follows that [Q(¥/2): Q(v/2,v/2)] =1 and Q(v/2, V/2) = Q(¥/2).

Let a and b be rational numbers. Show that Q(\/a, Vb) = Q(v/a + V).

Proof. Q(v/a ++/b) € Q(\/a,\/b) is obviously because \/a + Vb € Q(v/a,/b). Con-

versely, if a = b, then the assertion is easy to verify. So we suppose that a # b.
Then

Varvh 1 Ja-vh Ji-Vh_ 2@
Q(\/a+\/5)9 a-b +\/5+\/5_ a-b " a-b  a-b

and v/a € Q(y/a+Vb). Similary, v/b € Q(v/a+Vb) and Q(v/a, Vb) € Q(\/a+Vb). =

Let F,K, and L be fields with FF ¢ K ¢ L. If L is a finite extension of F' and
[L:F]=[L:K], prove that F = K.

Proof. Consider the tower of fields

r
—_——

F<K<L.

~{In

Since [L: F]=[L: K], it must be [K : F']=1. That is, K = F. n

Let F' be a field and K a splitting field for some nonconstant polynomial over F.
Show that K is a finite extension of F.

Proof. Let f(x) be a nonconstant polynomial in F[z] and f(x) splits in its splitting
field E. That is, f(x) = u(z-r1)% (x-rg)s2--(x—ry)% € E[z] and E = F(ry,re,...,1¢).
By Exercise 21.20, F is a finite extension of F. [ ]

Prove that C is not the splitting field of any polynomial in Q[z].

Proof. [ |
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21.39

21.40

20.36, 21.41

Prove that v/2 is not an element of Q(r).

Proof. 1f /2 = %, then 7 is a root of the polynomial [f(x)]? —2[g(x)]? and 7 is

algebraic over Q, a contradiction. [
Let a = cos 2 +isin 2 and 3 = cos 2 + isin 2. Prove that § is not in Q(a).
Proof.
p is a prime
= 2Pl 4+ ..+ 2 +1 is irreducible over Q
= the minimal polynomial of &, over Q is z/' + -+ z + 1
6
If =& ¢ Q(a) = Q(&r), then Q < Q(&5) < Q(&7)- =
4

7. EE{LEREE AR cyclotomic polynomial FFEEE, EEEH— T a1+ +

x + 1 is irreducible over Q.

f(@)=aPt+ v va+1= :i:__ll.
flz+1) = (z+1)P '+ v (z+1)+1
(1) -1
 (z+1)-1
s (s Qoo (1)

X

= P4 (p)xp_2+ (p)xp_3+-~+( b )
1 2 p-1

f(z+1) is irreducible over Q by Eisenstein Criterion with prime p
f(x) is irreducible over Q.

Y

Y

Suppose that a is algebraic over a field F. Show that a and 1+ a~! have the same
degree over F.

Proof. [I3iE—] 1+a ! € F(a) and F(1+a™') < F(a) is obviously. On the other
hand, a = [(1+a ') - 1]t e F(1+a™') implies that F(a) < F(1+a™'). Therefore,
F(a)=F(1+a!') and a and 1+ a~! have the same degree over F'.

737 Z] Note that F(a) = F(a™'). Let m(z) be the minimal polynomial of a=! over
F. Then m(x - 1) is irreducible over F' and m(x — 1) is the minimal polynomial
of 1+at over Fand [F(1+a™'): F]=degm(x-1)=degm(z) =[F(at): F] =
[F(a): F] [

[737E=] Let f(x) be the minimal polynomial of a. Since f(x) is irreducible over
F', the constant term of f(x) is nonzero and the reciprocal polynomial f*(x) =
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a"f(1/z) of f(z) is also irreducible over F (see herdf) and deg f*(z) = n, where
n = deg f(x). Note that f*(a7!) = (a7')"f(a) = 0. Hence, g(z) = f*(z) is the
minimal polynomial of a='. Furthermore, g(z-1) is irreducible over F' and g(x-1)
is the minimal polynomial of 1+ a~!

f7e. EEBR2036EHT .

21.42 Suppose K is an extension of F' of degree n. Prove that K can be written in the
form F'(xy1,xs,...,2,) for some x1,xs, ..., 2, in K.

Proof. Select a basis {x1, s, ..., x,} for K over F. [ |

thm.21.5 Let K be a finite extension of the field F' and let L be a finite extension of the field
K. Prove that
[L:F]=[L:K][K:F].

Proof. Suppose that {vy,vs,...,v,,} is a basis for L over K and {wy,ws,...,w,} is a

m
basis for K over F'. For any v € L, suppose that v = ¥ k;v;. For each k;, suppose
i=1

that kz = 721: fijwj, where fij e . Then
j=1

U:ikivi:m(iﬁjwi)vl ii i(wjvi) = szw(vzwﬂ)

=1 j5=1
Thus, S = {v;w; |i=1,2,...,m, j=1,2,...,n} generate L over F.

If 0 = Z Z fl](vlw]) = Z Z fl](wjvl) = 1(2 fzgwg)vu since {U17U2u-- 7Um} 1s

i=17=1 7=1

linearly independent over K and Z fijw; € K for each ¢, we have Z fijw; =0
j=1 J=1

for each i = 1,2,...,m. Since {wy,wsy,...,w,} is linearly independent over F' and

fij € F', we have f;; = fig =+ = fi, =0 for each i = 1,2,...,m. Thus, f;; =0 for all

1=1,2,...,mand j =1,2,...,n. Therefore, S is linearly independent over F' and S

is a basis for L over F. It follows that [L: F|=|S|=mn=[L: K][K:F]. n

Foote, p.541, exa.) Let p be a prime. Determine the splitting field and its degree over Q for zP — 2.
Proof. Since a? -2 = (z - ¥/2)(x - {2w,)(z - ¥/2w2)-(z - ¥/2wh ™). The splitting

field for 27 — 2 over Q is Q(¥/2, Wp).

By Eisenstein’s criterion with prime 2, 2P — 2 is irreducible over Q. Hence, [Q( Y2
Q] = deg (a¥ - 2) = p.

We know that ®,(z) is the minimal polynomial of w, over Q, so [Q(w,) : Q] =
deg®,(z)=p-1.

Since w, is a root of ®,(z) over Q ¢ Q(¥/2), we have [Q(¥/2,w,) : Q(¥/2)] <
deg ®,(z) =p-1. Thus,

[Q(V2,w,) : Q) = [Q(V2,w,) : Q(V2)] - [Q(V2: Q] < p(p - 1).

“http://math.stackexchange.com/questions/1758745/prove-that-fx-is-irreducible-iff-its-reciprocal-
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On the other hand, since

p=[Q(V2:Q1[Q(V2.w,) : Q]
and
p-1=[Qw,): Q]| [Q(¥2,w,): Q]
and ged (p,p-1) = 1, we have
p(p-1) [[Q(¥2,w,) : Q).
Therefore, [Q(/2,w,) : Q] =p(p-1).
Q(Wa wp)

<(p-1)

0187 S v Q(w,)

22 Chapter 22

rH GF(p)* is a cyclic group

22.4, 22.17, 22.19, 22.18, 22.15, 22.35, 22.8, 22.22, 22.41, 22.24, 22.7, 22.42, 22.43,
22.44

EfH Computational Exercises
22.23, 22.5, 22.6, 22.9, 22.20, 22.16

REfH Existence of Finite Field
92.27, 22.37, 22.25

##H Uniqueness of Finite Field
22.10

B Advanced Exercises
22.11, 22.33, 22.39, 22.21, 22.32, 22.36

#E#H Polynomial and Its Root
22.31, fiFE22.A

B 2" -2

75 22.B, #722.C, #F 22.E, 22.26, 22.30, 22.40
22.1 Find [GF(729) : GF(9)] and [GF(64) : GF(8)].
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Proof. By Exercise 22.2, [GF(729): GF(9)] =3, [GF(64): GF(8)] =2. u
22.2 1If m divides n, show that [GF(p") : GF(p™)] = n/m.

Proof. Consider the tower of fields

Z, < GF(p™) <GF(p").

|
22.3 Draw the lattice of subfields of GF(64).
Proof.
GF(2%)
GF(23) GF(2?)
Ly
|

22.4 Let a be a zero of 23 + 22 + 1 in some extension field of Z,. Find the multiplicative
inverse of @ + 1 in Zs[«].

Proof. [735&—]

¢
S 9
no
S+
+ ]
Rl
el
I
—_

Y
~—~
Q
+
—_
-
|
Q

[\o}

[737&Z] Since Zo(«) = Z[x]/{x3 + 22 + 1) and |Zy(a)*| =23 -1 =7. By Lagrange’s
Theorem, we have (a+1)7" =1 and (a+1)~! = (aw+ 1)5. Note that a3 =a?+ 1 and
at=ada=(a®?+a=a+a=(a?+1) +a.

(a+1)° = (a+1)*a+1)?
= (a*+1)(a?+1)
= (@®+a+1+1)(a?+1)

= (a?+a)(a®+1)

= o'+l +a’+a

= (@Fa+)+(®+))+E5a
2

= o’
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22.5

22.6

22.7*

22.8

Let a be a zero of f(x) =%+ 2x + 2 in some extension field of Z3. Find the other
zero of f(z) in Zs[a].

Proof. Let a be the root of 22+2x+2 in the extension field Zs[x]/(22+22+2) = Z3(«)
of Zg.
r +(2+a)

T -« ) 2 +2z +2
2 —-ax
(2+a)r +2

2+a)r -(2a+a?)
2+2a+a? =0

The other zero of f(x) in Zs(«a) is —(2+ @) =-2-a =1+ 2a. |

Let a be a zero of f(z) = 2%+ x + 1 in some extension field of Zy. Find the other

zero of f(x) in Zs[a].

Proof. a,a? =a? and o®’ = a* = a3 -a = (a+1)a = a® + « are all the zero of f(z)
in Zo(a). |

fi7e. JE1E Exercise 20.10:&:8 7T,

#7e. If f(x) is irreducible over Z, and a is a root of f(z) in the extension field
Zy(a) = Z,[x]/{f(x)) of Z,, then a?, a?*, a?’, ... are also roots of f(x).

Proof. Since Z,—{0} is a finite group under multiplication, by Lagrange’s Theorem,

s times
—

for all g € Z, - {0}, g~ = 1. Thus, g* = g and g*° = ((¢?)?)")P = g.
In addition, recall that if char K = p, then (u+v)P = uP + vP for every u,v € K.

If f(x)=ap,x™+ap12" '+ +a1x+ag and f(a) =0, then
f(aps) = an(aps )n + an—l(aps)n_l teeet 6Llaps + Qo

i a? (a” )" +d? (a7 )"+ d a? +db)
= a? (@) +ad? (@Y o+ d a? )
aj, acK2Zp
i (ana™ + a,_1a™”
= 0

S
Li ot aga+ag)?

Let K be a finite extension field of a finite field F'. Show that there is an element
a in K such that K = F(a).

How many elements of the cyclic group GF(81)* are generators?

Proof. Suppose that GF(81)* = (a). The element in GF(81)* is of the form a.

Since |GF(81)*| = |a| = 80 and |a*| = ngLTL| 3 = gcd§g0 o @° 1s a generator of GF(81)*

if and only if |a®| = ﬁ =80 if and only if ged (80, s) = 1. The number of such s

is ¢(80) = (21-5) =80- (1 - 1) (1 - 1) = 32, where ¢ is the Euler phi function. m
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22.9

22.10

22.11

Let f(z) be a cubic irreducible over Z,. Prove that the splitting field of f(z) over
Zs has order 8.

Proof. Lemma. Suppose that deg f(z) € {2,3}, f(x) is irreducible over F' if and
only if f(x) has no root in F.

We use the Lemma to find all the monic irreducible cubic polynomials over Z,.

a3 has root 0
x3 +1 hasroot 1
x3 +T has root 0
x3 +r +1 <«

3 +a? has root 0
[ +1 <«

3 +x? 4z has root 0
23 +22 4z +1 hasrootl

Therefore, f(z) =23 +z+1or f(z)=23+2%+1.

Let a be a root of 23 + x + 1 in the extension field Zy[x]/(x? + x + 1) of Zy. Then
Brr+l=(z-a)(z-a)(z-a*)=(z-a)(z-a®)(z-(a®+a)).

Similarly, let b be a root of 2 + 2% + 1 in the extension field Zs[x]/(z3 + 22 + 1) of
Zy. Then 23 + 22+ 1= (x-b)(x-02 )(x -0**) = (z - b)(z - 02)(z - (b2 +b+1)). m

Prove that the rings Zs[x]/{x? + = + 2) and Zs[z]/(x? + 2x + 2) are isomorphic.

Proof. The finite field GF(p") is the splitting field of 27" — x over Z,. By the
uniqueness of the splitting field, if two finite fields have the same order, then they
are isomorphic.

Verify that x2+2x+2 and x2+2x+2 have no root in Zs. Thus, z2+x+2 and 22 +2z+2
are irreducible over Zs. Hence, Zs[z]/(x? + x + 2) and Z3[x]/{x? + 2z + 2) both are
field and Zs[z]/(2? + v +2) 2 GF(23) = Zs[z]/{2? + 22 + 2). u

Show that the Frobenius mapping ¢ : GF(p") — GF(p"), given by a — a?, is a ring
automorphism of order n (that is, ¢” is the identity mapping).

the multiplication in a field is commutative
Proof. ¢(ab) = (ab)? L arb? = ¢(a)d(b).
Note that if p is a prime, then p | (’;) fori=1,2,...,p-1.

¢(a+b) = (a+0b)?

binomial theorem
L (p)a”bo +W+W+---+W+ (p)aobp
0 -1 D

char GF(p™)=p

ety
0 p
= a? + bP

¢(a) + o(b).

Therefore, ¢ is a homomorphism.
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22.12

22.13

22.14

22.15

22.16

22.17

We know that ker¢ is an ideal of GF(p™), but an ideal of a field F' must be {0}
or F itself. Since ¢ is not zero mapping, we have ker ¢ + GF(p") and ker ¢ = {0}
and ¢ is one-to-one. On the other hand, since the number of the elements in the
domain of ¢ is the same as the codomain of ¢ and ¢ is one-to-one, we get ¢ is onto.
That is, ¢ is an isomorphism.

For any a € F, if a = 0, then ¢"(a) = ¢"(0) =0=a. If a # 0, then a € GF(p™)*. By
Lagrange’s Theorem, |a| divides |GF(p")*| =p" -1 and a?"~! =1 and a*" = a. Then

¢™(a) = ((a?)P)~)P =aP" = a. That is, ¢" is the identity mapping. u
Determine the possible finite fields whose largest proper subfield is GF(2%).

Proof. GF(219), GF(2%5), GF(22). -
Prove that the degree of any irreducible factor of z® — x over Z, is 1 or 3.

Proof. We know that the splitting field of 28 — x = 22° — z is GF(23). Let f(x) be
a irreducible factor of 28 — x over Zy. Then f(x) splits in GF(23) as well. Hence,
we have Zy[x]/(f(z)) 2 F and a tower of fields

3

Zy < F<GF(2%).

Thus, F'2 Zy or F'2 GF(23) and deg f(x) € {1,3}. u
7. EEA AL, 2FHITE.

Find the smallest field that has exactly 6 subfields.
Proof. GF(2'?). |
Find the smallest field of characteristic 2 that contains an element whose multiplica-

tive order is 5 and the smallest field of characteristic 3 that contains an element
whose multiplicative order is 5.

Proof. GF(2%),GF(3*).
For the first part of the question, it is sufficient to find the smallest n such that
5] (2" -1). Then GF(2")* = (a) and |a*5 | = 5. The second part is similarly. — m

Verify that the factorization for f(z) = 23 + 22 + 1 over Zy given in Example 2 is
correct by expanding.

Show that x is a generator of the cyclic group (Zs[x]/{x® + 2z + 1))*.
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22.18

22.19

22.20

Proof. Let F = Zs[x]/(x3+2z+1). Since |F*| = 33-1 = 26, by Lagrange’s Theorem,
|z| divide 26 and |z| € {1,2,13,26}.

Note that 23 = -2z -1=z+2 and z* =z 23 = x(x + 2) = 22 + 2.

MERIE
= (2%+22)°
= 25+823
= 2% +223
= 222"+ 2(z+2)
= 2%(2®+2z) +22+4
= at+20% + 22+ 1
= (2 +22)+2(x+2)+ 2 +1
= 2%+5

= 2+2.

B =z 2?2 =x(2?+2)=23+2x = (r+2)+2x =2+ 1. That is, |z| # 13. Thus,
|z| = 26 and x is a generator of F*. u

Suppose that f(x) is a fifth-degree polynomial that is irreducible over Z,. Prove
that = is a generator of the cyclic group (Zo[x]/(f(x)))*.

Proof. Let F =Zs[x]/(f(z)). Then |F*|=2°-1 =31. By Lagrange’s Theorem, |z|
divides |F*| = 31. Therefore, |z| =31 and x is a generator of F'™*. u

Show that x is not a generator of the cyclic group (Zs[x]/(z3 + 2z + 2))*.
Proof. Let F = Zs[x]/(x3+2x+2). Then |F*|=33-1=26. Note that 23 = -2x-2 =
z+land 2 = (23 =(z+1)p3=23+1=(z+1)+1=0+2.
212 9.3
(z+2)(z+1)
= 22+2.

B =g =x(2?+2)=23+2x=(x+1)+2z=1. That is, |x| = 13 and z is not a
generator of F'* m

If f(x) is a cubic irreducible polynomial over Zs, prove that either z or 2z is a
generator for the cyclic group (Zs[z]/{f(z)))*.

Proof. If we want to prove that (A = B or ('), we can suppose that A and -B,
then prove C.

Let F =Zs[z]/{f(x)). Then |F*|=33-1=26. By Lagrange’s Theorem, |z| divides
|F*| =26 and |z| € {1,2,13,26}. Since x # 1 and 22 # 1, if z is not a generator of F’*,
then |z| = 13. It follows that (2z)? =422 = 22 # 1 and (2x)'3 = 22'3 = 2 # 1 because
213 =(22)6.2=46.2=16.2=2 (mod 3). Therefore, |2z| = 26. n
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22.21 Prove the uniqueness portion of Theorem 22.3 using a group theoretic argument.
Proof. [ ]

22.22 Suppose that o and 8 belong to GF(81)*, with |a| =5 and |5] = 16. Show that af3
is a generator of GF'(81)*.

Proof. We already know that ()% = (a®)'6(516)> = 1. Hence, |af3] < 80.

Consider the multiplicative groups (a) and (/). By Lagrange’s Theorem, if ¢ €
() n (B), then |¢| divides [{a)| = || =5 and |(5)| = |8] = 16. It follows that |c¢[ = 1
and ¢ =1. That is, (a) n(8) = {1}.

If (afB)® =1, then a® = f=5 € (@) n(f) and a® =1 = 55. It follows that |a| =5 divides
s and |8| = 16 divides s. Since ged (5,16) = 1, we have 5- 16 = 80 divides s. When
s = laf|, 80 divides s = |af| and 80 < |ap|.

]
22.23 Construct a field of order 9 and carry out the analysis as in Example 1,
Proof. Zs[x]/{x?+ 2x + 1). |
22.24 Show that any finite subgroup of the multiplicative group of a field is cyclic.
Proof.
G<F* |G|<o
F* is abelian
= G is a finite abelian group
Fundamental Theorem of
Finite Abelian Group
X G~ Zp?lq ® Zp’2"2 ® - ® Zyrs, P1,D2, -, Ps do not necessarily distinct
let, lzlcm(p;‘1 ,p;2 ..... pgs)
= VgeG, g'=1and | < pj'ph--ple
= every element in G is a root of the polynomial z! -1 over Z,
zlfl has atlmost [ roots
= |G| <1
= |G| = py'pypy <1
= pipypy =1 =lem(pi', pi?, ..., )
= ged (p1, py7, . pe) = 1
= P1, P2, ..., ps are distinct
= Gz Zp? &) Zp;2 D ---D Zp:s ~ Zp?p;z_pgs 18 CyCliC
]

22.25 Show that the set K in the proof of Theorem 22.3 is a subfield.

22.26 If g(x) is irreducible over GF(p) and g(x) divides xP" — x, prove that degg(x)
divides n.
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Proof. Let E be the splitting field of g(x) over Z,,. Then there exists F' = Z,[z]/{g(x))
such that F'< E.

In addition, recall that the splitting field of 2" — x is GF(p™). Since g(z) divides
aP" — x, all the roots of g(x) is also a root of 2" —x. Thus, E < GF(p").

Therefore, we have a tower of fields

degg(x)

and deg g(x) | n. u

22.27 Use a purely group theoretic argument to show that if F' is a field of order p”, then
every element of F'* is a zero of 2P" — .

Proof. By Lagrange’s Theorem, for any a € F*, |a| divides |F*| = p» — 1. That is,
a?"~' =1 and a?" = a. [ |

22.28 Draw the subfield lattices of GF'(3'®) and of GF(23°).

Proof. R
GF(3°) GF(3%)
\ /
GF(3?) GF(3%)

~

22.29 How does the subfield lattice of GF(23°) compare with the subfield lattice of
GF(3%)7

Proof.
GF(23)

TN

GF(215)  GF(219)  GF(29)

| > >

GF(25) GF(2?) GF(22)

~.
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22.30*

22.31

22.32

22.33

22.34

If p(z) is a polynomial in Z,[x] with no multiple zeros, show that p(z) divides
xP" — x for some n.

Proof. Let E be the splitting field of p(z) over Z,. Suppose that p(z) = (x -
1) (2 - a2)-(@ = Qgegp(x)) € E[x]. By Exercise 21.20, Suppose that [E : Z,] = n.
Then E = GF(p"). Since the elements in E = GF(p") are roots of 27" — x, we get
a1, (g, ..., Oldeg p(z) AlSO are roots of 2" —x. That is, p(z) | (27" - z). [ |

Suppose that p is a prime and p # 2. Let a be a nonsquare in GF(p)—that is,
a does not have the form b? for any b in GF(p). Show that a is a nonsquare in
GF(pn) if n is odd and that a is a square in GF(p") if n is even.

Proof. Since a is a nonsquare in Z,, % —a has no root in Z,. Then z? - a is
irreducible over Z, because deg (22 - a) = 2. We have a field F' = Z,[z]/{2?-a) such
that [F:Z,] = 2. n

Let f(z) be a cubic irreducible over Z,, where p is a prime. Prove that the splitting
field of f(x) over Z, has order p3 or p°.

Proof. Let a be a root of f(x) in the extension fields of Z,(a) = Z,[z]/{f(z)) of
Z,. Suppose that f(z) = (z -a)g(x).

If g(z) has a root in Z,(a), then g(x) splits in Z,(a) because degg(x) = 2. Thus,
Z,(a) is the splitting field for f(z) and [Z,(a) : Z,] = deg f(x) = 3 and |Z,(a)| = p>.

If g(«) has no root in Z,(a), then g(z) is irreducible over Z,(a) because deg g(z) = 2.
Let b be a root of g(z) in the extension field Z,(a)(b) = Z,(a)[z]/{g(x)) of Z,(a).
Then we have a tower of fields
Ly :i Zp(a) E-/ Zy(a)(b).
deg f(x)=3 deg g(z)=2

Therefore, Z,(a)(b) is the splitting field for f(z) over Z, and [Z,(a)(b) : Z,] = 6
and [Z,(a)(b)| = p°. .
WrE. 2EMITE,

Show that every element of GF(p™) can be written in the form a? for some unique
ain GF(pn).

Proof. See Exercise 22.11. ¢ is onto. [ |
Suppose that F' is a field of order 1024 and F* = («). List the elements of each

subfield of F'.

Proof. The subfield lattice diagram is
GF(219)

TN

GF(29) GF(2?)
\Z2 e
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22.35

22.36
22.37

22.38

22.39

22.40*

22.41

Since F* = (a), |af = 1023 = 3-11-31, we have || = 31 and |a3*!| = 3. Thus,

GF(25) ={0}u(a3?) and GF(2?) = {0} u (a34). [
Suppose that F' is a field of order 125 and F'* = («). Show that 62 = -1.

Proof. Note that |o| = |F*| = 125 -1 = 124. Recall that || = ﬁlils)' Note that
= 1] =2 If [0°] = i = wortiarsy = 2> then ged (124,5) = 62 and s | 62 and s = 62
(mod 124). |
Show that no finite field is algebraically closed.

Let E be the splitting field of f(x) = 2?" — x over Z,. Show that the set of zeros
of f(x) in E is closed under addition, subtraction, multiplication, and division (by
nonzero elements).

Proof. Verity directly. [ ]
#7e. This field is the finite field GF (p).

Suppose that L and K are subfields of GF'(p"). If L has p* elements and K has p
elements, how many elements does L n K have?

Proof. pged(sit), [ |

Give an example to show that the mapping a - a? need not be an automorphism
for arbitrary fields of prime characteristic p.

Proof. Consider the field Z,(z). Then the mapping a — a? is not onto. For if there

exists ggg € Z,(z) such that (gg;) =x. Then [f(z)]P =z [g(x)]P and

p-deg f(x) = deg [f(2)]" = deg (x - [g(x)]") = 1 + p-deg g().

Which is impossible. ]
In the field GF(p"), show that for every positive divisor d of n, 2" — z has an
irreducible factor over GF(p) of degree d.

Proof. 2% 22.B ;T 22.D n
Let a be a primitive element for the field GF(p"), where p is an odd prime and n

is a positive integer. Find the smallest positive integer & such that a* =p - 1.

Proof.

ot
’Blﬁ
|
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22.42%

22.43*

22.44%

f7E 22.A

T 22.B

Let a be a primitive element for the field GF(5"), where n is a positive integer.
Find the smallest positive integer k such that a* = 2.

Proof.
ab =2
= a=4=-1
o gt
< 4k =|GF(5")*|=5"-1
5" —1
k=
< 1
|
Let p be a prime such that p (mod 4) = 1. How many elements of order 4 are in

GF(p")*?

Proof. Observe the easy cases like p =5, n = 3.

Suppose that GF(p") = (a). We want to find s such that |a*| = 4. Since |a®| =
Il -4 e ged(s,pn-1) = ”T_l, we have s = pT_lkSp”—l and 1 <k < 4.

ged (s,p™-1)
Then n_1 n_1 n_1
ged (s,p" ~ 1) = ged (P——k, p" - 1) = ged (P, T mm -4,
4 4 4
pr-1, pr-1 pr-1
-4) = 1.3}.
sed U2k oty =Pl ke q13)
[
Let p be a prime such that p (mod 4) = 3. How many elements of order 4 are in

GF(p)*?

Let a,b be elements of GF(2"), n odd. Show that a? + ab+ b? = 0 implies a = b = 0.

Proof. If b =0, then a® =a?+ab+b*>=0and a=0. If b# 0, then a®>+ab+b>=0

implies that (%)2 + (%) +1=0. That is, § is a root of the irreducible polynomial

2?2 +x+1 over Zy and 22 +x + 1 is the minimal polynomial of ¢ over Z,. Therefore,

we have a tower of fields .

Z ZQ(%) <GF(2").

o {IA

Which is a contradiction because n is odd and 2 4 n. [}

7. EEMBE Lidl, p.79, exe.2.3.

Let f(x) be an irreducible polynomial over Z, of degree m. Then f(x) divides
a2P" — x if and only if m divides n.
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7 22.C

#7e 22.D

7 22.E

Proof. (=) Let E be the splitting field of f(z) over Z,. Then there exists F'
Zy[x]/(f(z)) such that F < E.

In addition, recall that the splitting field of a?" -z is GF(p™). Since f(z) divides
aP" —x, all the roots of f(x) is also a root of xP" — x. Thus, F < GF(p").

Therefore, we have a tower of fields

n

F<E<GF(p")

Z

p

s{in

and m | n.

(<) Let a be aroot of f(z) in the extension field Z,(a) 2 Z,[x]/{f(x)) of Z,. Since
a € Zy(a)* and |Z,(a)*| = p™ - 1, by Lagrange’s Theorem, a?”~! = 1 and a*” = a.
Note that this identity also holds when a = 0. Assume that n = ms, then

s times s times
- ——

apn _ apms _ apm.pmmpr; _ ((ajpm)pm)m)pm - a.

A

That is, a is a root of P" — x.
Since f(z) is irreducible over Z,, either f(z) divides zP" -z or ged (f(x),2?" —z) =
1. If ged (f(z),2P" —x) =1, then there exists s(x) and t(z) such that

f(x)s(z) + (2" - 2)t(x) = 1.
It follows that 0 = f(a)s(a) + (a?" —a)t(a) = 1, a contradiction. Therefore, f(x) |
(zP" - 1). u
7. EEEHE2F Lidl, lem.2.13,

SEEEEN (<) FTLAAREH Nicholson, p.304, 22.(a), MHE#E—F A Fraleigh,
p.305, 10,

EEEHER (=) ATLAHKRER Gallian, p.396, 26 & Nicholson, p.304, 22.(b).

i [ E A —EE RS Lidl, thm.3.20,

Factor 28 — x into irreducibles in Zy[z].

#7e. 382 Nicholson, p304, 22.(c).

For any prime p and positive integer d, there exists an irreducible f(x) € Z,[x] with

deg f(z) =d.

Proof. Consider F' = GF(p?). By Exercise 22.24, (F - {0},*) = (a). Then F =
Zy(a). Let m(x) be the minimal polynomial of a over Z,. Then degm(x) = [Z,(a) :
Ly)=[F:Z,) = [GF(p?) : Zy) = d. [ ]

For every finite field Z, and every n € N, the product of all monic irreducible over
Z, whose degrees divide n is equal to zP" — .

Proof. Z2%&HiF 22.B, [ |
7. EEEHE2% Lidl, thm.3.20,
EMEEHE Fraleigh, p.305, 13—
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7 orbit() divides |G]
94.63, 24.9

EfH Sylow 3rd Theorem
94.14, 24.17, 24.12, 24.22, 24.23, 24.24, 25.15, 24.27, 24.25

#EfH Sylow 1st and 2nd Theorem
24.28, 24.46, 24.65, 24.55

B Internal Direct Product
24.26, 24.60, 24.33, 24.58, 24.20, 24.37, 24.19

REMH #0vRETE 24.21, 24.18, 24.36, 24.64

R n, e {1,s},n,€{1,t}
24.34

B n,=1,n,€{1,t}
24.39, 24.35

BEAH Orbit-Stabilizer Theorem
94.44, 24.51, 24.71, 24.5, 24.3

REMH H <« N(H)
24.16

&l n, =[G N(H)]
24.29

B Cauchy Theorem
24.54

##H N/C Theorem (p.217)
924.69, 24.67, 24.68

A p-groups
24.41, #7524 A, FHFT 24.B, 24.43, 24.50, 24.42

B Advanced Exercises

24.1, 24.62, 24.7, 24.40, 24.6, 24.8, 24.31, 24.11, 24.13, 24.30, 24.48, 24.49, 24.32,
p.581, exe.3, 24.56, 24.47, 24.57, 24.52, 24.45, 24.66, 24.38, 24.59, 24.61

24.1 Show that conjugacy is an equivalence relation on a group.

202



24.2

24.3

244

24.5

Proof. We define a relation “~” on a group G by
a ~b < a is conjugate to b < a = gbg™! for some g€ G.
Then

e a=cael =an~a.
ea~b=>a=gbgt=b=(g")a(g )t =>b~a.
e a~bb~c=>a=gbg',b=hch™' =a=(gh)e(h tg7') = (gh)c(gh)™ =a~ec.

That is, “~” is an equivalence relation on G. [

f78. H Exercise 24.1 & Orbit-Stabilizer Theorem, & LA LABE] Class Equations
Calculate all conjugacy classes for the quaternions.

Proof. Quaternion Group Qg = {1,-1,4,—i,j,-j, k, —k} EHKTTRFTEHETUA
TEIZRES, NER S AR M e B E R B =T E, SRS AR TR ERER

R (EVIVE N e e
k J

\/

orbit(1) = {1},

orbit(-1) = {-1},
orbit(¢) = {i,-i},
orbit(j) = {j,—j},
orbit(k) = {k,—k}.

Show that the function 7" defined in the proof of Theorem 24.1 is well-defined, is
one-to-one, and maps the set of left cosets onto the conjugacy class of a.

Show that orbit(a) = {a} if and only if a € Z(G).
Proof. orbit(a) = {a} < Vge G ,gag™ =a < a e Z(G). [
Let H be a subgroup of a group G. Prove that the number of conjugates of H in

Gis|G:N(H)|.

Proof. This is a special case of the Orbit-Stabilizer Theorem applies on the conju-
gation of G on the set of all subgroups of H. [
#7¢. #H Exercise 24.5 & Sylow 2nd Theorem, & ERJLAEE]: If H is a Sylow p-
subgroup of G, then n, = [G: N(H)].
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24.6" Let H be a proper subgroup of a finite group G. Show that G is not the union of
all conjugates of H.

Proof. Recall that the number of conjugate subgroup of H is [G : N(H)]. Note
that ¢;Hg;' ng;H g;l not necessarily be {e}. But we want to consider the largest
possible number of elements of Uy gH g™, so we consider the following case.

[G: N(H)]

P D e
nggl

P!

That is, g;Hg;' ng;Hg;" = {e}. In this case,

ILg;gHQ‘II = 1+[G:N(H)]-(|H|-1)
ge
H<N(H)<G
[G:H]z[?:N(H)]
¢ 1+[G:H]-(|H|-1)
= 1+]G|-[G: H]
H is proper
[G:H]>1
¢ .

Even though the largest possible number of elements of Uq gH g™, we still have
|Ug€GgHg_1|<|G|' SOG#UgeGgHg_l' .
7. ROEMME, HxgHg ! and |H| =|gHg™|.

Bl p.204, Exercise 9.64 tL#—T: Suppose that a group G has a subgroup of order
n. Prove that the intersection of all subgroups of GG of order n is a nornal subgroup
of G.

Proof. If H is a subgroup of order n, we show that gHg™! is also a subgroup of
order n.

e € gHg™ ' is clearly because e = geg™'. If gh1g~', ghog™' € gHg™', then

(gh197")(ghag™) = ghihog™' € gHg™!
and
(ghig ™) =ghi'gegHg™.

Thus, gHg™! is a subgroup of G. Define a mapping f: H - gHg ' by f(h) = ghg™!.
Then f is onto and one-to-one. Therefore, H and gHg~! have the same cardinality
(the number of element).
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Furthermore, if gH,g™' = gHyg™ !, then Hy = g 'gH1g7'g = g-'gH>g 'g = Hy. Thus,
for any g € G, if {H; | i € I} is the set of all subgroup of G whose order is n, then
{gH;g7'| i€ I} is also the set of all subgroup of G whose order is n. It follows that

N H= ) gHg™t.

|H|=n |H|=n

For any = € Ng-n H and g € G,

grgte N gHg™ = M H.

|H|=n |H|=n

That is, Nig-n H < G. [ ]
24.7 1f G is a group of odd order and = € GG, show that z! is not in orbit(z).

Proof. Suppose that |G| = 2k + 1. Then by Lagrange’s Theorem, for any g € G, |g|
divides |G| and g%*! = g.

if a7!eorbit(x)

x !t = gxg™! for some g€ G

v= (a7t = (grg ) =gl = gPag
7= gPug? = e = g2y (2R42) _ gl g
2 =1

|z| = 2 divides |G|, a contradiction.

1

Ve iy

24.8% Determine the class equation for non-Abelian groups of orders 39 and 55.

Proof. Let G be a non-Abelian group of order 39. Note that 39 = 3-13. By Sylow
3rd Theorem and Exercise 24.14, ny3 € {1} and nj € {1,4,7,10,13}. By Sylow 1st
Theorem, a Sylow 13-subgroup in G is of order 13 and a Sylow 3-subgroup in G is
of order 3.

If ng = 1, then let H be the only one Sylow 3-subgroup of G and K be the only
one Sylow 13-subgroup of G. By Sylow 2nd Theorem, H < G and K < G. Since
ged (|H|,|K]) = 1, by Lagrange’s Theroem, Hn K = {e}. Since |HK]| = % =138 -
39 = |G|, we have HK = G. Thus, G is the internal direct product of H and K.
Then G 2 He® K 2 Z3 ® Z13 2 Z3g, which is cyclic and abelian, contrary to the

hypothesis. Therefore, ng = 13.

Let H be a Sylow 3-subgroup of GG. By Sylow 2nd Theorem, all the Sylow 3-
subgroup are conjugate each other. These 13 Sylow 3-subgroup are H, g1 Hg;',
g2Hgs', ..., g12H gy Note that orbit(hy) 2 {h1, g1hig7t, g2hag7t, ..., g12higrs }- Since
orbit(hy) divides |G| and e ¢ orbit(hy), we have |orbit(hi)| = 11 and orbit(h;) =

{h1, 1lngr", g2 gy s gr2hagiy }- Similarly, orbit(ha) = {ha, g1hagi', gahogi’, ., grahagis }-
As the following figure indicates.
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There are 39 —2-13 = 13 elememts not in Hu g1 Hg'ugaHgy' U+ U g1aHgrs — {e}.
These 13 elements form the only one Sylow 13-subgroup K of G. By Sylow 2nd
Theorem, K < G. Since K < G, for any k € K, orbit(k) ¢ K. Select a fixed
k + e e K. Recall that orbit(k) divides |G|. We claim that orbit(k) = 3.

If Jorbit(k)| = 39, then G = orbit(k) ¢ K, a contradiction.

If |orbit(k)| = 13, then orbit(k) = K and e € K = orbit(k), which is impossible
because orbit(e) = {e} norbit(k) = .

On the other hand, since G is not abelian, we have G # Z(G) and |Z(G)| # 39.
Since Z(G) is a subgroup of G. By Lagrange’s Theorm, |Z(G)| divides |G|. If
|Z(G)| € {3,13}, then |G/Z(G)| is a prime and G/Z(G) is a cyclic group and G
is abelian and G = Z(G), a contradiction. Thus, |Z(G)| = 1 and Z(G) = {e}.
Therefore, k ¢ Z(G) and |orbit(k)| # 1.

Therefore, |orbit(k)| = 3. Suppose that K — {e} is partition by the disjoint orbits
orbit(ky), orbit(ky), orbit(ks) and orbit(ks). We have the class equation

|G

1Z(G)]| + |orbit(hy )| + [orbit (hs)| + [orbit (k1 )| + |orbit(ks)| + [orbit (ks )| + lorbit (k)|
1+13+13+3+3+3+3.

24.9 Determine which of the equations below could be the class equation given in the
proof of Theorem 24.2. For each part, provide your reasoning.
a. 9=3+3+3
b.21=1+1+3+3+3+3+7
c. 10=1+2+2+5
d. 18=1+3+6+8

Proof. (a) Since {e} is always a conjugacy class of G, 1 is always a term in the class
equation.

(b) By Exercise 24.4, the number of 1 appear in the class equation is equal to |Z(G).
In addition, since Z(G) is a subgroup of G, by Lagrange’s Theorem, |Z(G)| divides
|G|. But in the case (b), 1+ 1 does not divide 21.

2

(¢) In Dj, the conjugacy classes are {1}, {a,a*}, {a? a3}, {b,ba,ba?, ba?, ba'}.

(d) In this case, there is an element x € G such that |orbit(z)| = 8, which is a
contradiction because |orbit(z)| = 8 does not divide |G| = 18. |
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24.10

24.11

1st, 24.12

24.13

HE 24.14

Exhibit a Sylow 2-subgroup of S;. Describe an isomorphism from this group to Dj.

Proof. Note that |Sy| = 4! =24 = 23-3. Let a = (1234) and b = (12)(34). Then
aba = b and (a,b) is a Sylow 2-subgroup of Sy and (a,b) = D,. n

Suppose that G is a group of order 48. Show that the intersection of any two
distinct Sylow 2-subgorups of G has order 8.

Proof. Note that 48 =2%-3. Let H and K be two distinct Sylow 2-subgroup of G.
Since H n K < H, by Lagrange’s Theorem, |H n K| divides |H| = 2* = 16. Thus,
|HnK|e{1,2,4,8,16}. Since H # K, |H n K| # 16.

1 | IK|-|K| _ 1616

If [ HnK|<4=> ——>-=|HK|= >
ARl =g > = R =g o > =

a contradiction. Therefore, |H n K| = 8. n

7. EOUHEBE Fraleigh, p.331, exa.37.13, order 48; p.331, exa.37.14, order 36,
BEME A«B<G = BcN(A).

=64 > |G|,

Find all the Sylow 3-subgroups of Sj.

Proof. Note that |Sy| = 4! =24 = 23.3. By Sylow 3rd Theorem and Exercise 24.14,
n3 € {1,4,7}. By Sylow 1st Theorem, a Sylow 3-subgroup in Sy is of order 3. All
the Sylow 3-subgorups of Sy are ((123)), ((124)), ((134)), and ((234)). u

Let K be a Sylow p-subgroup of a finite group G. Prove that if z € N(K) and the
order of = is a power of p, then x € K.

Proof. Let |G| = p"m, p + m. Suppose that |z| = p*. Recall that K < N(K) < G.
Consider the factor group N(K)/K and 2K € N(K)/K and the tower of groups

m

K<N(K)<G.

np

Since |zK| divides |z| = p* and |z K| divides |N(K)/K| and |[N(K)/K| divides m,
we have |tK|=1and 2K = K and z € K. u

Suppose that GG is a group of order p"m, where p is prime and p does not divide m.
Show that the number of Sylow p-subgroups divides m.

Proof. By Sylow 3rd Theorem, n, = 1 (mod p) and n, | |G| = p"m. Suppose
that n, = ps+ 1 for some s € Z. Then n, = (ps+1) | p"m and n, | m because
ged(ps+1,p) =1 and ged (ps+1,p7) = 1. [

7. MRIEPE H < N(H) and n, = [G: N(H)], where H is a Sylow p-subgroup.
ARPEE RE ] AN T L %, Let H be a Sylow p-subgroup of G.
H<N(H)<G.

np
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ond, 24.15

24.16

24.17

24.18

Suppose that G is a group and |G| = p™m, where p is prime and p > m. Prove that
a Sylow p-subgroup of G must be normal in G.

Proof. By Sylow 3rd Theorem and Exercise 24.14, n, € {1}. By Sylow 2nd Theorem,
the only one Sylow 7-subgroup is normal. [ |

Let H be a Sylow p-subgroup of GG. Prove that H is the only Sylow p-subgroup of
G contained in N(H).

Proof. If K is a Sylow p-subgroup of G and K < N(H), then K is also a Sylow
p-subgroup of N(H).

Recall that H <« N(H). By Sylow 2nd Theorem, H is the only one Sylow p-subgroup
of N(H).

Therefore, H is the only Sylow p-subgroup of G contained in N(H). |

Suppose that G is a group of order 168. If G has more than one Sylow 7-subgroup,
exactly how many does it have?

Proof. Note that 168 = 23-3-7. By Sylow 3rd Theorem and Exercise 24.14, n; €
{1,8,15,27}. If ny > 1, then ny = 8. [ |

Show that every group of order 56 has a proper nontrivial normal subgroup.

Proof. Let G be a group of order 56. Note that 56 = 23-7. By Sylow 3rd Theorem
and Exercise 24.14, ny € {1,8}. By Sylow 1st Theorem, a Sylow 7-subgroup in G is
of order 7.

If n; = 1, then by Sylow 2nd Theorem, the only one Sylow 7-subgroup is normal
and we are done.

If n; =8, let Hy, Hy,...,Hg be all the Sylow 7-subgroups in G. By Lagrange’s
Theorem, H; n H; = {e} for i # j € {1,2,...,8} and for each i € {1,2,...,8}, if
h #ee€ H;, then |h|=7.

Thus, in each H;, there are |H;| — 1 = 6 elements of order 7. On the other hand,

there are n; = 8 Sylow 7-subgroups. Thus, there are 6y, - 8,, = 48 elements of
order 7. As the following figure indicates.
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There are 56 — 48 = 8 elements remaining (include identity e). These 8 elements
form the only one Sylow 2-subgroup in G (by Sylow 1st Theorem). By Sylow 2nd
Theorem, this only one Sylow 2-subgroup is normal. [

f7e. EEMHIRTE Nicholson, p.375, exa.7, order 992, 351, p2q WRFRIER A,

24.19* What is the smallest composite (that is, nonprime and greater than 1) integer n
such that there is a unique group of order n?

Proof. By Exercise 24.33, if |G| = 15, then G 2 Z;5. The following table prove that
15 is the smallest composite integer n such that if |G| =n, then G 2 Z;5.

Gl |23 4 [|5] 6 |7 8 |9 10| 11| 12 |13 ] 14 | 15
Gz | Zy | L3 | Zy ZLs | Zg Ly | Zg Ly Lng | Ly | Za2 Lng | Loy | Zns
Lo ® 7y S3'ED3 Ty ® 7 Zz®Zs | Ds L ® Lo D,
Lo ® Zg ® 7o Ay
Dy Dy
Qs iy % g = Q2
=

24.20 Let GG be a noncyclic group of order 21. How many Sylow 3-subgroups does G have?

Proof. 21 = 3-7. By Sylow 3rd Theorem and Exercise 24.14, n3 € {1,4,7} and
n7 € {1}. By Sylow 2nd Theorem, there is only one Sylow 7-subgroup K of G and
K«G.

If n3 =1, then by Sylow 2nd Theorem, there is only one Sylow 3-subgroup H of GG
and H < G. Since ged (|H|, |K]) = 1, by Lagrange’s Theorem, we have H n K = {e}
and |HK]| = llg‘ﬂlgll =37 =21 = |G|. That is, G = HK. Therefore, G is the internal
direct product of H and K and G2 He® K 2 Z3® 77 % Zs,. But G is not a cyclic

group, which is a contradiction. Therefore, ng = 7. ]

24.21 Prove that a noncyclic group of order 21 must have 14 elements of order 3.

Proof. By Exercise 24.20, n3 = 7. By Sylow 1st Theorem, a Sylow 3-subgroup in G
is of order 3.

Let Hy, Ho,...,H; be all the Sylow 3-subgroups in G. By Lagrange’s Theorem,
H;nH;={e} fori+je{l,2 ...,7} and for each i € {1,2,...,7}, if h # e € H;, then
|h| = 3.

Thus, in each H;, there are |H;| — 1 = 2 elements of order 3. On the other hand,

there are nz = 7 Sylow 3-subgroups. Thus, there are 2y, _; - 7,, = 14 elements of
order 3. As the following figure indicates.
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H
2

H1 H3
|Hi>2\ \

Ist, 24.22 How many Sylow 5-subgroups of Sj are there? Exhibit two.

Proof. Note that |Ss| = 5! = 120 = 23-3-5. By Sylow 3rd Theorem and Exercise
2414, n5 € {1,6, 4,16, 21}. By Sylow 1st Theorem, a Sylow 5-subgroup in Sj is of
order 5. There are 6 Sylow 5-subgroups of S5. ((12345)) and ((12354)) are two of
them.

1st, 24.23 How many Sylow 3-subgroups of S5 are there? Exhibit two.

Proof. Note that |S5| = 5! = 120 = 23-3-5. By Sylow 3rd Theorem and Exercise
24.14, ny € {1,4,7,10,13, 16, 19,27, 25,28, 31, 34, 37,40} = {1,4,10,40}. By Sylow
1st Theorem, a Sylow 3-subgroup in S5 is of order 3. There are 10 Sylow 3-subgroups

of S5. ((123)), ((124)), ((125)), ((134)), ((135)), ((145)), ((234)), ((235)), {(245)),
((345)) are all of them.

1st, 24.24 What are the possibilities for the number of elements of order 5 in a group of order
1007

Proof. Let G be a group of order 100. Note that 100 = 22-52. By Sylow 3rd Theorem
and Exercise 24.14, ns € {1}. Let H be the only one Sylow 5-subgroup of G. By
Sylow 1st Theorem, if a € G and |a| = 5, then (a) < H.

By Sylow 1st Theorem, a Sylow 5-subgroup in G is of order 52 = 25. By the corollary
of Theorem 24.2, H is abelian. By the Fundamental Theorem of Finite Abelian
Group, H 2 Zos or H 2 Zs @ Zs. There are 4 elements of order 5 in Zss. There are
24 elements of order 5 in Zs & Zs. Therefore, the number of elements of order 5 in
G might be 4 or 24. [

7. WEEMEZEES, Sylow p-subgroup B order N —E & p. —M&IKE, MR
|G| = p*m, p + m, B Sylow p-subgroup in G #J order L2 p™

1st, 2nd, 24.25 What do the Sylow theorems tell you about any group of order 1007
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24.26

B 24.27

1st, 24.28

24.29

24.30*

Proof. Note that 100 = 22 - 52,
Sylow 1st Theorem: There is a subgroup of order 2 and a subgroup of order 5.

Sylow 3rd Theorem: ny € {1,3,5,7,9, 14,13 15 17,19, 21,23, 25}, ny = 1.
Sylow 2nd Theorem: The Sylow 5-subgroup is normal.

Note that a Sylow 2-subgroup in G is of order 4. The Sylow 5-subgroup in G is of
order 25. [

Prove that a group of order 175 is Abelian.

Proof. Note that 175 =52-7. By Sylow 3rd Theorem and Exercise 24.14, ns € {1,6}
and n; € {1,8,15,22}. Let H be the only one Sylow 5-subgroup of G and K
be the only one Sylow 7-subgroup of G. By Sylow 2nd Theorem, H < G and
K < G. Since ged (|H|,|K]|) = 1, by Lagrange’s Theroem, H n K = {e}. Since
|HK| = Ilguflg\l = 2T =175 = |G|, we have HK = G. Thus, G is the internal direct
product of H and K. That is, G2 H @ K.

Since |H| = p?, by the Corollary of Theorem 24.2, H is abelian. Of course, K = Z;
is abelian. Therefore, G ¥ H @ K is abelian. [ ]

7e. EEMHIRAE Nicholson, p.374, exa.6o

Let G be a group with |G| = p™m, where p is a prime that does not divide m and
p > m. Prove that the Sylow p-subgroup of G is normal.

Proof. See Exercise 24.15. [ ]

Determine the number of Sylow 2-subgroups of D,,,, where m is an odd integer at
least 3.

Proof. By Sylow 1st Theorem, a Sylow 2-subgroup of D, is of order 2. There are
m Sylow 2-subgroups of

Doy, = {1,a,a?,...,a™ " b, ba,ba?, ..., ba™* | |a] = m, |b| = 2, aba = b}.

They are (b), (ba), (ba?), ...,(ba™1). u

Let K be a Sylow 2-subgoup of D,,,, where m is an odd integer at least 3. Prove
that N(K) = K.

Proof. By Exercise 24.28, ny = m. Consider the tower of groups

Generalize the argument given in Example 6 to obtain a theorem about groups of
order p?q, where p and ¢ are distinct primes.

The theorem we generalize is as following: Let |G| = p?q, where p and ¢ are dis-
tinct primes. Then G has either a normal Sylow p-subgroup or a normal Sylow
g-subgroup. (C.f. Isaacs’s Finite Group Theory.)
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24.31%

24.32

Proof. If p > ¢q, then by Sylow 3rd Theorem, n, = 1. By Sylow 2nd Theorem, the
only one Sylow p-subgroup is normal in G.

If p < g, then by Exercise 24.14, n, € {1,p,p?}. If n, = 1, then we are done as the last
case. If n, = p, then by Sylow 3rd Theorem, n, =p =1 (mod ¢), which is impossible
because p < q.

Suppose that n, = p?. Let Hy, Hs, ..., Hy2 be all the Sylow ¢-subgroups in G. Note
that the order of a Sylow g-subgroup is ¢ (in this case). That is, |H;| = ¢ for each
i =1,2,...,p%. By Lagrange’s Theorem, for any h # e € H;, we have |h| divides
|H;| = q. Furthermore, H;n H; = {e} for i #+ j. (If e+ h ¢ H; n H;, then |h| = ¢ and
H; = (h) = H;, a contradiction.)

Now, in each H;, there are |[H;|—1 = ¢ —1 elements of order p?. On the other hand,
there are n, = p* Sylow g-subgroups. Thus, there are (¢ - 1), 1-p? = p*q-p°
elements of order p?. As the following figure indicates.

There are p?q — (p?q — p?) = p? elements remaining (include identity e). These p?
elements can’t form the n, Sylow p-subgroups. [ ]

What is the smallest possible odd integer that can be the order of a non-Abelian
group?

Proof. BRZE| semidirect product. [ |
Prove that a group of order 375 has a subgroup of order 15.

Proof. Note that 375 = 3-53. By Sylow 3rd Theorem and Exercise 24.14, ns3 €
{1,.+,25, +}.

If ng = 1, then let H be the only one Sylow 3-subgroup of G. By Sylow 2nd Theorem,
H < G. Let K be a Sylow 5-subgroup of G. By Cauchy Theorem, there exists an
element k in K such that |k| = 5. Let L = (k). Then HL is a subgroup of G (because
H < @G) and

_ AL _3:5

HL|= =— =15.
HL |Hn L

If ng = 25, then let H be a Sylow 3-subgroup of G. Since [G : N(H)] =ns3 = 25, we
have |[N(H)| =|G|/25 =15 and N(H) is a subgroup of order 15. n
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24.33

24.34

Without using Theorem 24.6, prove that a group of order 15 is cyclic.
Proof. See Exercise 24.26. ]
Prove that a group of order 105 contains a subgroup of order 35.

Proof. Note that 105 =3-5-7. By Sylow 3rd Theorem and Exercise 24.14, ns €
{1,6,14, 21} and n; € {1,8,15}.
If ns = 21 and ny; = 15, then there are 21 -4 = 84 elements of order 5 and 15-6 = 90

elements of order 7, as the following figure indicates. The number of these elements
exceed |G, a contradiction. Therefore, either ns =1 or n; = 1.

If ns = 1, then let H be the only one Sylow 5-subgroup of G. By Sylow 2nd Theorem,
H < G. By Cauchy Theorem or Sylow 1st Theorem, let K be a subgroup of order 7.
Then HK is a subgroup of G and |[HK| = llgu;‘ =35. If ny = 1, then the argument
is the same. [ ]

7. BELHELUER: Fraleigh, p.331, exa.37.12.

f7e. HfE: If ns = 1, then by Sylow 2nd Theorem, the only one Sylow 5-subgroup
H is normal. Consider the factor group G/H. Then |G/H| =12 =3-7. In G/H,
by Cauchy Theorem, there exists an element gH in G/H which is of order 7. Then
K/H = (gH) is a subgroup of order 7 in G/H. By correspondence theorem, K < G
and |K|=|K/H|-|H|=7-5=35.

G/N

K K/H
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2nd, 24.35

24.36

If n; =1, then we can use the same method to get a subgroup of order 35 in G.
Prove that a group of order 595 has a normal Sylow 17-subgroup.

Proof. Note that 595 = 5-7-17. By Sylow 3rd Theorem and Exercise 24.14, we
have ns € {1,6, 1,16, .~} because 5 + (17-7-1). That is, ny = 1. Similarly,
ni7 € {1,18,35}. Let H be the only one Sylow 5-subgroup. By Sylow 2nd Theorem,
H<«G.

If ny7 = 35, let K4, K, ..., K35 be these 35 Sylow 17-subgroups of G, then K;u KsU
-+U K35 — {e} contains 16 - 35 = 560 elements of order 17.

Since H is normal in G, HK is also a subgroup of G and |H K| = \glm‘}%l' =85. By
the method as in Exercise 24.33, H K is a cyclic group.

Since H K = Zgs has ¢(85) = 64 generators, we have 64 elements of order 85. Then
there are 560 + 64 = 624 elements in G, but |G| = 595, a contradiction. Therefore,
ni7 = 1 and by Sylow 2nd Theorem, the only one Sylow 17-subgroup is normal.

Let GG be a group of order 60. Show that G has exactly four elements of order 5 or
exactly 24 elements of order 5. Which of these cases holds for A5?

Proof. Note that 60 =2%2-3-5. If n5 =1, let H be the only Sylow 5-subgroup of G,
then there are 4 elements of order 5 in H. If there is another element a of order 5,
by Sylow 1st Theorem, |(a)| =5 and (a) € H. Thus, there are exactly 4 elements of
order 5 in this case.

If ns = 6, let Hy,Hs,...,Hs be all the Sylow 5-subgroups in G. By Lagrange’s
Theorem, H; n H; = {e} for i # j € {1,2,...,6} and for each i € {1,2,...,6}, if
h # e € H;, then |h| = 5.

Thus, in each H;, there are |H;| — 1 = 4 elements of order 5. On the other hand,

there are ns = 6 Sylow 5-subgroups. Thus, there are 4y, _; - 6,5 = 24 elements of
order 5. As the following figure indicates.
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24.37%

24.38

24.39%

H
2

H1 H3
|Hi>4\ \

By Sylow 3rd Theorem and Exercise 24.14, n5 € {1,6, 1}.

There are 24 elements of order 5 in As. They are (12345), (12354), (12435),
(12453), (12534), ... n

Show that the center of a group of order 60 cannot have order 4.

Proof. Let G be a group and |G| = 60 and |Z(G)| = 4. Since Z(G) < G, consider the
factor group G/Z(G), |G/Z(G)| = L = 15. By Exercise 24.33, G/Z(G) is cyclic,
then by Theorem 9.3, GG is abelian and G = Z((G), a contradiction. [ |

Suppose that G is a group of order 60 and G has a normal subgroup N of order 2.
Show that

a. GG has normal subgroups of order 6, 10, and 30.

b. G has subgroups of order 12 and 20.

c. G has a cyclic subgroup of order 30.

Proof. [ ]

Let G be a group of order 60. If the Sylow 3-subgroup is normal, show that the
Sylow 5-subgroup is normal.

Proof. Note that 60 = 22-3-5. By Sylow 3rd Theorem and Exercise 24.14, ns €
{1,6,147}. Let H be the only one Sylow 3-subgroup. By Sylow 2nd Theorem, H < G.

If n5 =6, let Ky, K», ..., K¢ be these six Sylow 5-subgroups of G, then K; u Ky U
U Kg - {e} contains 4-6 =24 elements of order 5.

Since H is normal in G, for each ¢ = 1,2,...,6, HK; is also a subgroup of G and
|HEK;| = % = 15. By Exercise 24.33, HK; is a cyclic group. Note that HK;,nHK
does not necessarily be {e}. But we know that a generator of HK; does not be in
HK; if i # j. Since HK,; = Z;5 has ¢(15) = 8 generators, we have 8 -6 = 48 elements
of order 15. Then there are 24+48 = 72 elements in G, but |G| = 60, a contradiction.
Therefore, n; = 1 and by Sylow 2nd Theorem, the only one Sylow 5-subgroup is

normal.
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correspondence
theorem

. BTAREETEHEETME Sylow p-subgroup H,

24.40 Show that if G is a group of order 168 that has a normal subgroup of order 4, then

24.41

G has a normal subgroup of order 28.

Proof. Note that 168 =23-3-7. Let H be a normal subgroup of order 4. Consider
the factor group G/H. Then |G/H|=1%=2.3-7. In G/H, by Sylow 3rd Theorem
and Exercise 24.14, n; = 1. Let K/H be the only one Sylow 7-subgroup in G/H.
By Sylow 2nd Theorem, K/H < G/H. Then by correspondence theorem, K <« G
and |K|=|K/H|-|H|=7-4=28.

G/H

K K/H

Suppose that p is prime and |G| = p". Show that G has normal subgroups of order
p* for all k between 1 and n (inclusive).

Proof. Use induction on n. When n = 1, the result holds obviously. Suppose the
assertion holds when n > 1 and let G be a group with |G| = p"*i.

If |G| = |Z(G)|, then G is abelian and every subgroup of G is normal. The result
follows from Sylow 1st Theorem.
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If |G| # |Z(G)|, suppose that |Z(G)| = p*, where s <n+ 1. By induction hypothesis,
|Z(G)| has normal subgroups of order p* for all k = 1,2,...,s. Recall that if H <
Z(G) < G, then H <« G. So those normal subgroup of Z(G) are also normal
subgroup of G.

On the other hand, since Z(G) < G, consider the factor group G/Z(G). By
Theorem, 24.2, |Z(G)| #+ 1. That is, s > 0. Then |G/Z(G)| = p(»+D=s < pr+l,
By induction hypothesis, G/Z(G) has normal subgroups of order p* for all &k =

1,2,...,(n+1) - s. By correspondence theorem, G has normal subgroup of order p*
forall k=1+s5,2+s,....,((n+1)-s)+s.

G G|Z(G)
K [Z(
z@)

Therefore, G' has normal subgroups of order p* for all k=1,2,...,n+ 1. |

24.42 Suppose that G is a group of order p*, where p is prime, and G has exactly one
subgroup for each divisor of p™. Show that G is cyclic.

f78. compare with Exercise 11.22.

24.43 Suppose that p is prime and |G| = p». If H is a proper subgroup of G, prove that
N(H)>H.

Proof. 1t follows immediately from the above supplementary exercise. [ ]
24.44 If H is a finite subgroup of a group G and x € G, prove that |[N(H)| = |N(zHz™1)|.

Proof. For any z € G, consider the inner automorphism o, restrict to N(H). That
is, oxlnmy : N(H) - N(xHz™t). Since o, is an automorphism, o,|ym) is well-
define and one-to-one. We show that o] ~(#) is well-defined and onto.

Well-defined. If g € N(H), then gHg™' = H and
[owlvem (D)) (@Hz ™) [ou|nin (9)]™ = (xg2z™) (e Ha™ ) (wg2™) ™ =2gHg™ s~ =aHa™".

Thus, og|nmy(g) € N(xHa™).

Onto. Forany g € N(xHx™'), we have g(xHx™')g! = xHz ' and (ztgz)H(z tgz)™! =
H. That is, 27'gx € N(H). a7'gx belongs to the domain of o,|n(m). Then
og|ny(xtgx) = ge N(aHz™). -

7. If G is finite, then the result follows from [G : N(H)] = |orbit(H)| = Jorbit(z Hx™1)| =
[G:N(zHzY)].
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24.45 Let H be a Sylow 3-subgroup of a finite group G and let K be a Sylow 5-subgroup
of G. If 3 divides |N(K)|, prove that 5 divides |N(H)|.

Ist, 2nd, 24.46 If H is a normal subgroup of a finite group G and |H| = p¥ for some prime p, show
that H is contained in every Sylow p-subgroup of G.

Proof. By Sylow 1st Theorem, H < K for some Sylow p-subgroup K of G. By
Sylow 2nd Theorem, every Sylow p-subgroup is conjugate to K. Thus, every Sylow
p-subgroup is of the form gK¢g='. Therefore, H =gHg ' < gKg. [ |

24.47* Suppose that G is a finite group and G has a unique Sylow p-subgroup for each prime
p. Prove that G is the internal direct product of its nontrivial Sylow p-subgroups.
If each Sylow p-subgroup is cyclic, is G cyclic? If each Sylow p-subgroup is Abelian,
is G Abelian?

Proof. Suppose that |G| = p[*p5?---ps. For each prime divisor p; of |G|, by Sylow 2nd
Theorem, let H; be the only one Sylow p-subgroup and H; < G. Note that |H;| = p;'.
It is sufficient to show that G = HyHy---Hg and H;n HyHy---H; 1 H;q--H, = {e} for
each ¢ = 1,2,....s. Then G is the internal direct product of Hy, Hs,..., H;. The
desire follows from a lemma.

Lemma. Let Hy, Hs, ..., H,, be finite subgroups of G, where n > 2 and ged (|H,|, |H}|) =
1 for any ¢ # j. Then H;n HiHy+-H; 1H;\1--H,, = {e} for any i = 1,2,....,n and
|HyHo:+-Hy| = |Hy| - |Hol|-| Hal.

Proof of Lemma. We use induction on n. When n = 2, by Lagrange’s Theorem
and ged (|Hy|,|Ha|) = 1, we have H; n Hy = {e}. The second part follows from the

formula |Hy Ho| = % Suppose the result holds when n > 2.

Let Hy,Hs,...,H,, H,.1 be finite subgroups of G such that ged (|H,|,|H,|) = 1 for
any ¢ # j. For any ¢ =1,2,...,n + 1, by induction hypothesis,

|H1H2"'Hi—1Hi+1"'Hn+1| = |H1| : |H2| s |Hi—1| : |Hi+1| s |Hn+1|-
Thus,
ng (|Hi|7 |H1H2'"Hi—lHi+1"'Hn+1|) = ng (|Hi|, |H1| : |H2| s |Hi—1| : |Hi+1| s |Hn+1|) =1.

By Lagrange’s Theorem, H; N HiHy---H;_1H;11---Hypiq = {€}.
Furthermore,

[H[|K]

T |HyHy - Hy| - [ Hop |
H\H,-H, L L
[ Hy-Ho| |HyHy--Hy 0 Hyp o

|HK|=

first part

’HlHQHn| : ’Hn+1|
induction hypothesis

4 \Hy| - [Ha| -+ [Hy| - | Hpa|
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24.48

24.49

24.50*

2nd, 24.51

24.52

24.53

24.54

2nd, 24.55

If G, is a Sylow p-subgroup of a group G and H, is a Sylow p-subgroup of a group
H, prove that G, ® H, is a Sylow p-subgroup of G @ H.

Let G be a finite group and let H be a normal Sylow p-subgroup of G. Show that
a(H) = H for all automorphisms « of G.

Proof. 1If « is an automorphism on G, then |a(H)| = |H|. By Sylow 1st Theorem,
a(H) is also a Sylow p-subgroup of G. Since H < G, by Sylow 2nd Theorem, H is
the only one Sylow p-subgroup of G. Thus, a(H) = H. |

If H is a Sylow p-subgroup of a group, prove that N(N(H)) = N(H).
Proof.

ceN(N(H)) =  «N(H)z'=N(H)
H<N(H)
= rHx™' < N(H)
Exercise 24.16

= cHx '=H
= reN(H).

Let p be a prime and H and K be Sylow p-subgroups of a group G. Prove that
IN(H)| = [N(K)]|.

Proof. By Sylow 2nd Theorem, any two Sylow p-subgroups are conjugate. Then by
Exercise 24.44. [

Let p be a group of order p?¢?, where p and ¢ are distinct primes, ¢ + p? — 1, and
p + ¢> - 1. Prove that G is Abelian. List three pairs of primes that satisfy these
conditions.

Let H be a normal subgroup of a group . Show that H is the union of the
conjugacy classes in GG of the elements of H. Is this true when H is not normal in

G?

Proof. If a € H, then gag™ € gHg™' = H for all g € G and orbit(a) ¢ H.
Let H =((12)). Which is not normal in S3 and orbit((12)) = {(12),(13)} ¢ H. =

Let p be prime. If the order of every element of a finite group G is a power of p,
prove that |G| is a power of p.

Proof. For any prime divisor ¢ of |G|, by Cauchy Theorem, there exists an element
of order g. Thus, the prime divisor of |G| is p. |

For each prime p, prove that all Sylow p-subgroups of a finite group are isomorphic.
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Proof. By Sylow 2nd Theorem, any two Sylow p-subgroups H and K are conjugate.
That is, H = gK g™ for some g € G. Recall that the mapping o, : K - gKg' = H
is an isomorphism, which is called an inner automorphism. [

24.56* Suppose that N is a normal subgroup of a finite group G and Sg is a Sylow p-
subgroup of G. Prove that N n S is a Sylow p-subgroup of N.

Proof. [73i%&—] Suppose that |G| = p*m and |N| = p*t, where p + m and p + ¢.

H«G
= HS; <G
pit-p _|IN|-|Sq]

= NoSal Nnsal |NSg| divides |G| = p*m
Pt
= Nngg ™
ged (p,m)=1
% |NnSgl=p*
NnSgsN

= N n Sg is a Sylow p-subgroup in V.

Bl Exercise 9.66 FLE— T,
737 Z] Suppose that |G| = p*m and p + m and |Sg| = p™.

Consider N n Sg < Sg. By Lagrange’s Theorem, |N n Sg| = p.

Consider N nSg < N. By Sylow 1st Theorem, there exists a Sylow p-subgroup Sy
of N such that N nSs < Sy.

We claim that N nSg = Sy.

Since the order of Sy is a power of p, by Sylow 1st and 2nd Theorem, Sy < gSgg~*
for some g € G. Which implies that ¢='Syg <S¢

On the other hand, since Sy < N <G, we have g7'Sygc g 'Ng< N.

Therefore, g71Sng < NnSg and S| = [g71Sng| < [N nSg|. It follows that N nSg =
Sy is a Sylow p-subgroup of N. [ ]

24.57 Show that a group of order 12 cannot have nine elements of order 2.
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24.58

24.59%

Proof. [ ]

If |G| = 36 and G is non-Abelian, prove that G has more than one Sylow 2-subgroup
or more than one Sylow 3-subgroup.

Proof. Note that 36 = 22 - 32. See Exercise 24.26. |

Suppose G is a finite group and p is a prime that divides |G|. Let n denote the
number of elements of G that have order p. If the Sylow p-subgroup of G is normal,
prove that p divides n + 1.

Proof. [73i%&—] By Sylow 2nd Theorem, there exists only one Sylow p-subgroup L.
For any element g of order p, (g) is a subgroup of order p. By Sylow 1st Theorem,
(9) < L. Then Thus, every element of order p is in L.

#{geL:|g|=p} = IL|-#{geL:|gl=p"}-#{geL:lg|=p""}
- w—#{geL:|g|=p*}-#{geL:lg|=1}

cor. of thm.4.4
: P = (" on = d(P" ey = - gb(pz)]@ -1
= ps — 1.

[737&] By Sylow 2nd Theorem, there exists only one Sylow p-subgroup L. For
any element g of order p, (g) is a subgroup order p, by Sylow 1st Theorem, (g) < L.
Thus, all the elements of order p are in L.

By Exercise 24.41, there exists a subgroup N of order p, which is normal in G. as
above, we can conclude that N < L.

L LIN

HIN #K/Nx (kN)

If N¢ H<L and |H| = p, verify that H/N = {hN | h € H} is a subgroup of L/N.
By Correspondence Theorem, there exists K such that N < K and K/N = H/N.
Note that |/N|=|H/N|=p and |K| = p?. By the Corollary of Theorem 24.2, K is
abelian. Write K/N = (kN), where k ¢ N.

Since

K is abelian

(kn;)/N > (kn;)"N £ k™p™N =k™N = (kN)™ € (kN) = K/N,

we have (kn;)/N = K/N for each n; € N = {ny,ns,...,n,}. Note that |(kn;)/N| =
|K/N| = p. So (kn;) is a subgroup of order p. Hence, (kn),(kna),...,{(kn,) are
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all distinct subgroups of L whose order is p such that (kn;)/N = K/N. The p
subgroups (kny), (kns), ..., (kn,) of L correspond to a same subgroup K.

Similarly, except N, every p subgroups of order p in L correspond to a same sub-
group of order p2. Let s be the number of subgroups of order p in L. Then p| (s-1).

Note that s = -2, as the following figure indicates.

_n_
p-1

Therefore,

Pl=1=("5-1) = p@-DIn-0-1)
= pln-p+1

= pln+1
n
. EEEETLUSREK G 22— p-group, 2% Rotman’s An Introduction to the
Theory of Groups, p.75, lem.4.7 or Isaacs’s Finite Group Theory, p.7, 1A.8.(b).
— RV 2 IR KBTS, BIEIEEE S ZRAMEE R, TE BRI 7.
TEMR R 2K B,
e H Sylow p-subgroup s& normal & Sylow 2nd Theorem HI3&, i&{# Sylow p-
subgroup EME—H, WX ES L.
e H Sylow 1st Theorem, AT order & p BJ subgroup & &%E L %, ArAEM
HEZE G =L =2 p-group FLif.
o {fiii Sylow 3rd Theorem HIFEHH, & S BATE order & p Y subgroup FEEAE
&, Rl L FRERE b, EEEEERT AR, BHER T HRM—EREZERR
R, MR MEEERHAE S,
o RULAIREGBERFE—E order B p B subgroup H fERTE S |, EFHER So
2YOEE—E H, BEREGE—REIREE R,
o E%EE LEATE S LK @FF Sy={seS|l-s=sforalllelL}, EHiERERR
BEG H ERTE S BB, AILUE LEE Sy ZH0F—ExTE H T,
o TEITKMBEIR NSy N <L, B2, H Exercise 24.41, B LIAIE—EGH
_"f N € S(]o
o FRAMMEELIF, FlAl Dy, REFREMAPIFZTH S, BIME H ¢ Sy, HE
H #J conjugate HWAEBR Sy, MH H B conjugate FEELITER G po 15 (FHHl
BEMAESNT, W

H¢So=H#4L=N(H)+L=[L:N(H)]>1
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24.60

24.61

24.62

24.63

24.64

1st, 2nd, 24.65

M H B conjugate MEEER (L : N(H)], MRS L & p-group, AT [L :
N(H)] #az p BEE. Wk, order p BIFE normal subgroup, AJ LA
HHEZHERES conjugate, #FHE p H75HK—iH.

o TEERIM AERBR So B H, REBMWR H e Sy, Al H< L, H# conjugate
HREBCAS, EIEG EETBR S M H M—&1ETHm, EARMEMAEE
B H REMAIDUETBE So B H —&, & p @75 HK—H,

o PRKMEBZREGENHT, G120 Dy @ Zy 8@ Zs © Zs @ Zs, HfIEHRBR
So Wy H, WA LA p (85 B—HH, BRI ER LHE—ENE, i E M —L8
ZEUEH,

o CERF—EEAEB/NAM) BEAE T normal subgroup N, 2% quotient group
W —{EzhEE, BEF A correspondence theorem, % L/N ZREE L HI&ER.
|L/N|=|L|/p, T3] LB ERER L/N KEE L (9EH.

Determine the group of orer 45.

Proof. Note that 45 =32-5. See Exercise 24.26. [ ]
Show that there are at most three nonisomorphic groups of order 21.

Proof. In fact, only two, see exe.31 [ ]
Prove that if H is a normal subgroup of index p? where p is prime, then G’ ¢ H.

(G" is the commutator subgroup of G.)

Proof. By the Corollary of Theorem 24.2, a group of order p? is abelian. Therefore,
|G/H|=[G: H]=p? and G/H is an abelian group. Which follows that G'c H. =

Show that Z, is the only group that has exactly two conjugacy classes.

Proof. Suppose that there are only two conjugacy classes of GG. Since {e} is a
conjugacy class of GG, where e is the identity of G. Let e # x € G. Then orbit(x) =
G —{z} and (|G| -1) = |orbit(z)| divides |G|. It follows that |G| = 2. u

What can you say about the number of elements of order 7 in a group of orer
168 =8-3-77

Proof. Note that 168 = 23-3-7. By Sylow 3rd Theorem and Exercise 24.14, n; €
{1,8,15,27}.

By the method as in the Exercise 24.21, 24.18, 24.36, there are 6 or 48 elements of
order 7. [

Explain why a group of order 4m where m is odd must have a subgroup isomorphic
to Zy4 or Zs ® 75 but cannot have both a subgroup isomorphic to Z, and a subgroup
isomorphic to Zs & Z,. Show that S; has a subgroup isomorphic to Z, and a
subgroup isomorphic to Z, @ Zs.
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24.66

3rd, 24.67

3rd, 24.68

Proof. Part I. Let |G| = 4m, where 2 + m. By Sylow 1st Theorem, there exists a
Sylow 2-subgroup H, which is of order 4. We already know that a group of order 4
must be isomorphic to Zy or Zo @ Zs.

Part II. By Sylow 1st Theorem again, a subgroup of order 4 in G is a Sylow 2-
subgroup. If there are two Sylow 2-subgroups H and K such that H = Z, and
K 275 ®Zy. By Sylow 2nd Theorem, any two Sylow 2-subgroups are conjugate
each other, then Z, @ H ~ K = Zo & Z9, a contradiction.

Part IIL. In Sy, ((1234)) = Z4, ((12), (34)) = Zy & Zo. -

Let p be the smallest prime that divides the order of a finite group G. If H is a
Sylow p-subgroup of G and is cyclic, prove that N(H) = C(H).

Let G be a group of order 715 =5-11-13. Let H be a Sylow 13-subgroup of G
and K be a Sylow 11-subgroup of GG. Prove that H is contained in Z(G). Can the
argument you used to prove that H is contained in Z(G) also be used to show that
K is contained in Z(G)?

Proof. Note that 715 = 5-11-13. By Sylow 3rd Theorem and Exercise 24.14,
nis € {17/1/4/7%7%7)5%}'
niz=1 = [G:N(H)]=n;3=1
= G=N(H)

p.137,thm.6.5

11«

= N(H)/C(H)=G/C(H) < Aut(H) = Aut(Zi3) Zys.

By Lagrange’s Therem, the only possible of the order of the subgroup G/C(H) of
Zy9is 1. Thus, G =C(H) and H < Z(G).
Similarly, by Sylow 3rd Theorem and Exercise 24.14, ny; € {1, 4, <},

n13=1 = [GZN(K)]ZTLH:l
= G=N(K)

p.137, thm.6.5

= N(K)JO(K) = G/C(K) < Aut(K) 2 Awt(Z) & Zy.

We can’t determine the order of the subgroup G/C(K) of Zg, it might be 1 or 5,
so we can’t use this method to show that K is contained in Z(G). |

Let G be a group of order 1925 = 52.7-11 and H be a subgroup of order 7. Prove that
|C'(H)| is divisible by 385. What can you say about Z(G) if the Sylow 5-subgroup
is not cyclic?

Proof. Note that 1925 = 52-7-11. By Sylow 3rd Theorem and Exercise 24.14,
nr € {1787%7%7%7/}'
nr=1 = [G:N(H)]=n;=1
= G=N(H)

p.137, thm.6.5

= N(H)/C(H)=GJC(H) < Aut(H) = Aut(Z;) &  Zs

By Lagrange’s Therem, the only possible of the order of the subgroup G/C(H) of
Zg is 1. Thus, G=C(H) and 385=5-7-11 divides |G| = |C(H)|. n
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ond, 3rd, 24.69

24.71

f7E 24.A

7 24.B

w7E. EEREEN, BIMRRILRELSF, WMEBRMWUEE C(H) = G, BEER
R

Let G be a group with |G| =595 =5-7-17. Show that the Sylow 5-subgroup of G
is normal in G and is contained in Z(G).

Proof. Note that 595 = 5-7-17. By Sylow 3rd Theorem and Exercise 24.14, nj €
{1,6,14,16, »}. Let H be the only one Sylow 5-sbugroup. By Sylow 2nd Theorem,
H<«G.

ns=1 = [G:N(H)]=n5=1
= G=N(H)

p.137, thm.6.5

= N(H)/C(H)=GJC(H) < Aut(H) = Aut(Zs) &  Zi.
By Lagrange’s Therem, the only possible of the order of the subgroup G/C(H) of

Zyis 1. Thus, G=C(H) and H < Z(G). u
Prove that if  and y are in the same conjugacy class of a group, then |C'(x)| = |C(y)|.
Proof. If x and y are in the same conjugacy class, then orbit(z) = orbit(y) and
(G C ()] = orbit(x)] = lorbit(y)] = [G : C(y)]. .
If a group H of order p™ (p prime) acts on a finite set S and if Sy = {x €S | hz =

x for all h e H}, then |S| =[Sy (mod p).

Proof. Recall that x € Sy if and only if orbit(z) = {x} and |orbit(z)| = 1. Let
orbit(z ), orbit(xz), ..., orbit(x,,) be all distinct orbits whose cardinality greater
than 1. That is, |orbit(z;)| > 1. By Class Equation and Orbit-Stabilizer Theo-

rem,
m

5] =1S0| + > orbit(z;) =[So| + >_[H : Stab(z;)].
i-1

i=1
Since |H| = p", we have p | Tzn:[H : Stab(z;)] =S| - |So| and |S| =S| (mod p). =
i-1

If H is a p-subgroup of a finite group G, then [N(H): H] =[G : H] (mod p). (a
p-subgroup is a subgroup whose order is a power of prime.)

Proof. Let S be the set of all left cosets of H. Then |S| =[G : H]. Let H acts on
S by translation. That is, h-sH = hsH. Then |S| = |Sy| (mod p), where

sH e Sy < h-sH=hsH =sH,Yhe H
DN s'hsH = H Yhe H
= sthse H Vhe H
PN shste H VYhe H
PR sHs'c H VYheH

consider the inner automorphism
os:H—>sHs 'cH
|

< sHs'=H VYhe H
< se N(H)
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p-H81, exe.3

Preliminaries

Preliminaries

Since H <« N(H), consider the factor group N(H)/H. Then |So| = |N(H)/H| and

[G:H]=1|S|=|So|=[N(H):H] (mod p).

Show that a group of order 315 =32-5-7 has a subgroup of order 45.

Proof. Note that 315 =3%2-5-7. By Sylow 3rd Theorem and Exercise 24.14, ns €
{1,4,7,.}.

If ng = 1, then let H be the only one Sylow 3-subgroup of G. By Sylow 2nd Theorem,
H < G. Let K be a Sylow 5-subgroup of G. Then HK is a subgroup of G (because
H <« G) and

H|- K] _9-5

|HK| = =
|[HnK| 1

=45.

If ng =7, then let H be a Sylow 3-subgroup of G. Since [G : N(H)] =ng =7, we
have |[N(H)| = |G|/7 =45 and N(H) is a subgroup of order 45. n

24 Chapter 25

O Let |G| = p™m and p + m. A subgroup of order p" is called a Sylow p-subgroup
of G.

O Sylow 1st Theorem: Let |G| = p®»m and p + m. For any i = 1,2,...,n -1,
there exists a subgroup H of order p* and a subgroup K of order p*! such
that H < K. In particular, a subgroup of prime power order is contained in a
Sylow p-subgroup of G.

0 Sylow 2nd Theorem: Any two Sylow p-subgroups are conjugate. In partic-
ular, H is the only one Sylow p-subgroup if and only if H < G.

O Sylow 3rd Theorem: Let |G| = p"m and p + m. Let n, be the number of
the Sylow p-subgroups. Then n, = ps + 1 for some s e Nu {0} and n, | m.

O If |G| = p?, then G is abelian.

Proof. p.411, cor. [ |
O If |G| =pg and p< ¢ and p + ¢ — 1, then |G| is cyclic.

Proof. p.419, thm.24.6 [ |
O If A« B<G, then B<N(A).

Proof. 1t follows immediately from the definition of the normalizer N(A) =
{geG|gAgt = A} n

O Suppose that H <G. H <G if and only if N(H) = G.
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Preliminaries |

Proof. 1t follows immediately from the definition of the normalizer N(H) =
{9eGlgHgt=H}. u

If H is a Sylow p-subgroup of G, then [G: N(H)] = n,.

Proof. Recall that any two Sylow p-subgroups are conjugate. Let GG acts on the
set of all subgroup of G by conjugation. Then apply Orbit-Stabilizer Theorem
on the stabilizer N(H) and the orbit contains H. |

If G is abelian, then every subgroup is normal.

O Cauchy’s Theorem: If p is a prime and p | |G|, then there exists an element

o o o o

a € G such that |a| = p. In particular, (a) is a subgroup of order p.

Let H, K and L be three subgroups of G and H < L and K < L. Then HKcL.
Note that H K does not necessarily be a subgroup of G.

H||K
|HK]| = |‘H||r1‘|K‘|‘
N/C Theorem: N(H)/C(H) is isomorphic to a subgroup of Aut(H).
Aut(Z,) 2 7.

If xy = yz and () n(y) = {e}, then |zy| =L.c.m.(|z|, |y|).

#EfH Extended Cayley Theorem

25.3,

25.20

#E#H Extended Cayley Theorem and N(H)

25.4,

ARANERH A

#fH Embedding Theorem
SRAHIf B
HEfl A«B=B<N(A)

25.5

## N/C Theorem and Embedding Theorem

25.9,

25.7

" (Optional) H;n H; # {e}
ARAERIC, BRAHH D

#E#H (Optional) Burnside’s Normal Complement Theorem

25.6,

HE ¥

25.8

BEfH Advanced Exercises

25.10~25.19, 25.22~25.31

EfH Group Action

w7
7 B

A, Foote, p.44, exa.6, Foote, p.126, fift B, prop.11, p.149, fiF C, ffe D,
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25.1

25.2

25.3

254

Prove thta there is no simple group of order 210 =2-3-5-7.
Proof. By 2-0dd Test. [ ]
Prove thta there is no simple group of order 280 =23-5-7.

Proof. Note that 280 = 23-5-7. By Sylow 3rd Theorem and Exercise 24.14, njs €
{1,6,4, <,56} and n; € {1,815, ~}.

If ns = 56 and n; = 8, then there are 56 -4 = 224 elements of order 5 and 8 -6 = 48
elements of order 7, as the following figure indicates.

There are 280 — 224 — 48 = 8 elements remaining (include identity e). These 8
elements form the only one Sylow 2-subgroup in G' (by Sylow 1st Theorem). By
Sylow 2nd Theorem, this only one Sylow 2-subgroup is normal. [ |

Prove thta there is no simple group of order 216 = 23 - 33.

Proof. By Sylow 1st Theorem, there exists a Sylow 3-subgroup H. Then [G : H] = 8.
By Extended Cayley Theorem, there exists a homomorphism 6 : G - Sg with
ker < H + G. We show that ker # {e}. Then ker# < G and G is not simple.

If ker 0 = {e}, then by First Isomorphism Theorem,
G 2 G/{e} =G[/kerf ~Im(0) < Ss.
It follows that
216 = 2°- 3% = |G| divides |Sg| =8!=8-7-6-5-4-3-2-1,
which is impossible. [ ]

f7e. #IREEE Nicholson, p.365, exa.l. order 36.

Prove thta there is no simple group of order 300 = 22- 3 - 52.
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25.5

Proof. Let G be a group of order 300. By Sylow 3rd Theorem, ns € {1,6,11}.

If n5 = 1, then let H be the only one Sylow 5-subgroup of G. By Sylow 2nd Theorem,
H < G and we are done.

If ns = 6, then let H be a Sylow 5-subgroup of G. [key|] Note that [G : N(H)] =
ns = 6. By Extended Cayley Theorem, there exists a homomorphism 0 : G — Sg

H4G

with ker@ < N(H) # G. We show that ker6 # {e}.
If ker 6 = {e}, then by First Isomorphism Theorem,
G2 G/{e} =G/kerf ~Im(f) < Se.
It follows that
300 = 2%-3-5? = |G| divides |Sg| =6!=6-5-4-3-2-1,

which is impossible. [ ]
Prove thta there is no simple group of order 525=3-52-7.

Proof. By Sylow 3rd Theorem, n; € {1,15}. If n; = 1, then let H be the only one
Sylow 7-subgroup of G. By Sylow 2nd Theorem, H < G and we are done.
If ny =15,
let H be a Sylow 7-subgroup of G.
[G:N(H)]=n;=15
IN(H)| =35
N(H) is cyclic and abelian
there exists K < N(H) such that |K|=5

b4l

N(H) is abelian
EX K < N(H)
A<B=Bx<N(A)
=  N(H)<N(K)
= 35=|N(H)| divides |N(K)|.

On the other hand, by Sylow 1st Theorem,

K < L for some Sylow 5-subgroup L of G

= |L| =25
|G|=p® =G abelian
= L abelian
= KalL
AdB=B<N(A)
X L < N(K)
= 25 = |L| divides |N (K)|
= l.c.m.(35,25) = 175 divides |N(K)|
N IN(K)| > 175
S CIR (S FE )

175
which is impossible by Extended Cayley Theorem.
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ﬁm

fre. EE, & ilﬁ’]ﬁﬁ(i &Tﬁ?ﬁ?;&%ﬂﬂﬁiﬁ F{f G LB T B — LA, T
G IR —{EE “HE FSE (EFREERD R R

o FIAN If IN(H)|=pq, p>q and q + p—1, then N(H) is cyclic. Exercise 25.8’F
EZ TR LA Exercise 25.5 —1kY /7 #:5K#, (BEBAEE—F,
® EE!n\7 E‘E—EE%E/J A<IB<G3_B<N(A)

o HE, MREME K| = 7 895, MRIESE K <L H |L| = 7 EHE, BR
7+ |Gl HAMIEE K] =5 BERB 52||G|.

o IRAILLAABWRM ns 5ERIVEEG R EMHEE.

B LR

R

25.6 Prove thta there is no simple group of order 540 = 22-33 .5,

Proof. By Sylow 3rd Theorem, ns € {1, 6,11, 16, -, 36, .}

If n5 = 1, let H be the only one Sylow 5 subgroup of GG, then by Sylow 2nd Theorem,
H<«G.

If n5 = 6, by Extended Cayley Theorem, there exists a homomorphism 6 : G - Sg
and ker @ is a proper nontrivial normal subgroup of G.

If ns = 36, let H be a Sylow 5-subgroup of G. Then [G : N(H)] = ns = 36 and
IN(H)| = 235 355 =15 and

IN(H)/C(H)|=15/|C(H)| divides |[Aut(H)| = |Aut(Zs)| =

It follows that |C'(H)| = 15 and C(H) = N(H). By Burnside’s Normal Complement
Theorem [| there exists a normal subgroup of G such that G = HK and Hn K =

{e}. u
25.7 Prove thta there is no simple group of order 528 = 24-3-11.

Proof. By Sylow 3rd Theorem, nq; € {1,12, 23}.

If ny; = 1, let H be the only one Sylow 11-subgroup of G, then by Sylow 2nd
Theorem, H < G.

Shttps://ysharifi.wordpress.com/2011/01/20/burnsides-normal-complement-theorem-3/
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If nyy = 12, let H be a Sylow 11-subgroup of G, then [G: N(H)] =nq; = 12.

[GiN(H)]:TLH:lQ

mbedding Theorem

IN(H)| = 231 = 44 G=G

12

N/C Theorem

\N(H)/C(H)| = 44/|C(H)| divides [Aut(H)| = [Aut(Z11)| = 10

(C(H)| e {22,44)

Cauchy’s Theorem

A12 has no element of order 22

3yeH, lyl-11

vy = yx and (z) N (y)

|zy| = Lem. (2,11

a contradiction

25.8 Prove thta there is no simple group of order 315=32-5-7.
25.9 Prove thta there is no simple group of order 396 = 22-32-11.

Proof. By Sylow 3rd Theorem, ny; € {1,12,23, 34}.

If ny; = 1, let H be the only one Sylow 11-subgroup of G, then by Sylow 2nd
Theorem, H < G.

If ny; =12, let H be a Sylow 11-subgroup of G, then [G: N(H)] =nq; = 12.

(G N(H)] =nu = 12

Embedding Theorem

IN(H)| = £3211 _ 33 G 2 Goopy < Ara

N(H) is cyclic

A12 has no element of order 33

JxeC(H), |x|=

a contradiction
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25.10

25.11

25.12

25.13

25.14

25.15
25.16
25.17
25.18

25.19

Prove that there is no simple group of order n, where 201 < n < 235 and n is not
prime.

Without using the Generalized Cayley Theorem or its corollaries, prove that there
is no simple group of order 112.

Without using the 2-0Odd Test, prove that there is no simple group of order 210.

You may have noticed that all the “hard integers” are even. Choose three odd
integers between 200 and 1000. Show that none of these is the order of a simple
group unless it is prime.

Show that there is no simple group of order pgr, where p, ¢ and r are primes (p, ¢,
and 7 need not be distinct).

Proof. If p>q>r, then n, = 1.

If p=q+r, then by Exercise 24.30.

If p =¢q =r, then by p.410, Theorem 24.2, Z(G) # {e}. If Z(G) = G, then G is
abelian and every subgroup is normal. If Z(G) # G, then Z(G) is a nontrivial
proper normal subgroup. [

Show that A; does not contain a subgroup of order 30, 20, or 15.
Show that S5 does not contain a subgroup of order 40 or 30.
Prove that there is no simple group of order 120 =23-3-5.

Prove that if G is a finite group and H is a proper normal subgroup of large order,
then G/H is simple.

Suppose that H is a subgroup of a fintie group G and that |H| and (|G : H| - 1)!
are relatively prime. Prove that H is normal in G. What does this tell you about
a subgroup of index 2 in a finite group?

Proof. Let [G : H] = m. By Extended Cayley Theorem, there exists a homomor-
phism 6 : G - S,, such that kerd < H. By First Isomorphism Theorem,

G/kerf =Im(0) < S,

= |G|/ ker 0] = |G/ ker 0] = |[Im(6)| divides |S,,| = m!
|GI=[G:H]{H|=m | H]|
iy o el
|kerd| |kerf] '
|H]
T -1 = ([G: H]=1)!
= e = (G )
ftly divides |H],
cd (|H|,([G:H]-1)!)=1
ged (| |([l 1-DYH IH|
= =
| ker 0]
= |H| = |ker 6]
ker 0<H
< H=kerf <G.
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HEE 25.20 Suppose that |G| = pi'ph?---ps, where p; is prime and p; < py < -+ < p,. If H <G and
[G: H] =py, then H < G. (Suppose that p is the smallest prime that divides |G].
Show that any subgroup of index p in G is normal in G.)

Proof. If [G': H] = py, then |H| = p[* 'p}? - pi*. By Extended Cayley Theorem, there
exists a homomorphism ¢ : G - 5, with ker6 < H. We show that ker = H. Then
H=ker0<«G@G.

ri—1-t1, ro—ta  , rs—ts

Suppose that ker 6 = p} Py 2l

First Isomorphism Theorem
5 |G/ ker 0] = pt** pl2e-pls = [Tm(0)| divides |S,,| = pi!
= t1:t2:-~-:ts:0and kerf = H.

wWFE. EEEHER [G: H]=2= H G HIHEE,
25.21 Prove that the only nontrivial proper normal subgroup of Sy is As.
Proof. [13i&E—]
Suppose that {e} s H<$Ssand A; + H < S5

normal N normal = normal

= HnA5<S5
= HnAs < As
Ag is simple

2 HnAs=A; or {e}

If Hn A= A;

= As<H

Ag+H=Ss,
= |As| = 60 < |H| < 120 = | S5],
a contradiction because |H| divides |Ss|.
If HnAs ={e}
H<G, HAz<Ss

= 120=|S5|2|HA5|=%=60-|H|
= |H|<2
H+{e}

5X |H| =2 (Or use Exercise 5.23.)

= H = (h) for some h € S5 with |h| =2

HnAg={e}, h¢Ag

X h = (i5) for some i # j € {1,2,3,4,5}
H<Ss

£ take g = (ik) € S5, where k ¢ {i,j}, ghg™* € H,

but ghg™ # h and ghg™" # e,
a contradiction because |H| = 2.
(Or use Exercise 9.72 and Exercise 5.66)
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[7537&] Write down all the elements of S5 and classify them by conjugacy classes.
Count the number of elements in each conjugacy classes. Let H be a normal
subgroup of S5 and H # {e} and H # S5. H satisfy three conditions.

e A normal subgroup is an union of some conjugacy classes.
e By Exercise 5.23, all elements of H or half of them are even permutation.

e By Lagrange’s Theorem, |H| divides |S;5| = 120.
The only possible of |H| is 60 and H = As.

1 20 15 24 10 20 30
e (123) (12)(34) (12345) (12) (123)(45) (1234)
(132) (12)(35) (12354) (13) (132)(45) (1243)
(124) (12)(45) (12435) (14) (124)(35) (1235)
(142) (13)(24) (12453) (15) (142)(35) (1253)
(125) (13)(25) (12534) (23) (125)(34) (1245)
(152) (13)(45) (12543) (24) (152)(34) (1254)
(134)  (14)(23) (13245) (25) (134)(25) (1324)
(143)  (14)(25) (13254) (34) (143)(25) (1342)
(135) (14)(35) (13425) (35) (135)(24) (1325)
(153)  (15)(23) (13452) (45) (153)(24) (1352)
( (
( (
( (
( (
( (
( (
( (
( (
( (
( (

145) (15)(24) (13524) (145)(23)  (1345)
154)  (15)(34) (13542) (154)(23)  (1354)
234) (23)(45) (14235) (234)(15) (1423)
243) (24)(35) (14253) (243)(15) (1432)
235) (25)(34) (14325) (235)(14) (1425)
253) (14352) (253)(14) (1452)
245) (14523) (245)(13)  (1435)
254) (14532) (254)(13)  (1453)
345) (15234) (345)(12)  (1523)
354) (15243) (354)(12)  (1532)
(15324) (1524)

(15342) (1542)

(15423) (1534)

(15432) (1543)

(2345)

(2354)

(2435)

(2453)

(2534)

(2543)

25.22 Prove that a simple group of order 60 has a subgroup of order 6 and a subgroup of
order 10.

Proof. [ ]
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25.23 Show that PSL(2,7Z7) = SL(2,7Z7)]Z(SL(2,Z7)), which has order 168, is a simple
group.

Proof. [ ]

25.24 Show that the permutations (12) and (12345) generate Sj.

Proof. BEUEREAR, SRiE THINEER LK, BEERRERRTEENR,

(12345) = (12)(12345) = (12345)(12) = (12)(12345)(12) =

(12345)2 = (12)(12345)2 = (12345)2(12) = (12)(12345)2(12) =
(12345)3 = (12)(12345)3 = (12345)3(12) = (12)(12345)3(12) =
(12345)* = (12)(12345)* = (12345)%(12) = (12)(12345)4(12) =

Let H = ((12), (12345)). Then (2345) = (12)(12345) € H, (124) = (12)(12345)3(12) €
H and (12345) € H. By Lagrange’s Theorem, [(2345)] = 4, [(124)] = 3 and
|(12345)| = 5 all divide |H|. Hence, 4-3-5 =60 divides |H| and H = A5 or H = S.
But (12) is an odd permutation in H, so H = Ss. |

25.25 Suppose that a subgroup H of S5 contains a 5-cycle and a 2-cycle. Show that
H = 55.

Proof. Let o = (c1cac3cq05) and B = (c1¢;) be a b-cycle and a 2-cycle in Ss, respec-
tively, where i € {2,3,4,5}. Note that

(creacseqcs) = (crcacseqcs)
(crcacseacs)? = (ciescseacy)
(cicacseqcs)® = (creqcaeses)
(crcacseacs)® = (crescacses)

Let v = (c1cacscqes)™ = (c1¢;xyz). Then applies the same method in Exercise 25.24
on [ and 7. [ ]

25.26™ Suppose that G is a finite simple group and contains subgroups H and K such that
|G : H| and |G : K| are prime. Show that |H|=|K]|.

Proof. Lemma 1. If H and K are subgroups of a group G, then [H : Hn K] <
[G:K]. If [G: K] is finite, then [H: HN K] =[G : K] if and only if G= KH.

Lemma 2. Let H and K be subgroups of finite index of a group G. Then [G :
HnK]is finite and [G: HN K] <[G: H][G: K]. Furthermore, [G: HN K] =[G :
H][G:K]if and only if G = HK.

Proof of Exercise 25.26. If [G: H]| = [G : K], then the result follows from the
formula |H|-[G: H]=|G|=|K|-[G: K].

Suppose that [G : H] and [G : K] are two distinct primes. Then ged ([G: H],[G : K]) =
1. Consider the two towers of groups

HnK<H<G
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25.27

25.28

and

HnK<K<G.
Since [G: H]|[G:HnK]and [G:K]|[G: HnK] and ged ([G: H],[G: K]) =1,
we have [G: H]-[G: K] |[G: Hn K]. By Lemma 2, we have [G: H]-[G: K] =
[G:HnK]and G=HK.
Suppose that |G| = pi'py*---ps* and [G: H] = p; and [G : K] = p; for some i # j €
{1,2,...,s}. Then

||.||
G|=|HK|= =|H| |K

1,72 ri—1 r 71,72 ri—1 r
pl p2 ...pil ...pss .pl p2 p] ...pSS

71,472 s
pl p2 ...]gsg

2r1 . 2r9 . 2r;—1 27']' -

= pl p2 -:pi --.p]

27

1
-:aps .
It follows that r, =0 for k #4 and k # j and r; =r; = 1. That is, |G| = p;p;.

Suppose that p; < p;. Since the index [G : H] = p; is the smallest prime divisor of

|G|, by Exercise 25.20, H < G, contrary to the simplicity of G. [ |
Show that (up to isomorphism) As is the only simple group of order 60.

Proof. [ ]
Prove that a simple group cannot have a subgroup of index 4.

Proof. Let G be a group and H be a subgroup of G with [G : H] = 4. By Extended
Cayley Theorem, there exists a homomorphism 6 : G - S, such that kerf < H.
Since G is normal and kerf < G, we have kerf = {e}. By the First Isomorphism
Theorem, G = G/{e} = G/kerf = Im(0) < Sy and |G| divides |Sy| = 24. That is,
|G| € {4,6,8,12,24}. An abelian group with these order is not simple. Furthermore,
the smallest non-abelian simple group is of order 60 (As). Hence, a simple group
which has a subgroup of index 4 cannot exist. [

WFE. R MRE (G H])=4=> H«GEEEHE, a0 H = (b), G =Dy, [G: H] =4,
but H 4 G.

B B, TBECTHIK, SEHATLRAE. 58
H<K<G

—————
4

R [G:K]=2, 8] K<G, BERE G & simple, FTlA K = G 8& K = H,
F4:, Bt BEEEIA classification of small groups 2§, A @EEFTZ T —H,
When |G| =4, G is abelian and G is not simple.

When |G| =6, 4 =[G : H] divides |G| = 6, a contradiction.

When |G| = 8, if G is abelian, then G is not simple. If G is non-abelian, then G = D,
or G 2 (Yg. Both are not simple.

When |G| = 12, |H| = 3. Which means that H is a Sylow 3-subgroup of G. Since
G is simple, we have H ¢ G and N(H) # G. Consider the tower of groups H <
N(H) < G. Tt follows that N(H) = N. Hence, n3 = [G: N(H)] =[G : H] = 4.
There are 4 Sylow 3-subgroups.
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25.29

There are 8 elements of order 3. The remaining 12 — 8 = 4 elements form the only
one Sylow 2-subgroup K. By Sylow 2nd Theorem, K is normal in G. Contrary to
the simplicity of G.

When |G| = 24, BEEEEHRET,

Prove that there is no simple group of order p?q, where p and ¢ are odd primes and
q>p-

Proof. By Sylow 3rd Theorem and Exercise 24.14, n, € {1,p,p*}.

If n, = 1, then by Sylow 2nd Theorem, the only one Sylow g-subgroup is normal in
G, contrary to the simplicity of G. Similarly, n, = 1.

If n, = p?, let Hy, Hs,...,H,2 be all the Sylow g-subgroups in G. By Lagrange’s
Theorem, H;nH; = {e} fori # j € {1,2,...,p?}. Foreachie{1,2,....,p?}, if h#eec H;,
then |h| = q.

Thus, in each H;, there are |[H;|—1 =g -1 elements of order g. On the other hand,
there are n, = p* Sylow g-subgroups. Thus, there are (¢ - 1)1 - pi, = p*q - p*
elements of order ¢q. As the following figure indicates.

There are p?q — (p?q — p?) = p? elements remaining (include identity e). These p?
elements can only form a Sylow p-subgroup in G (by Sylow 1st Theorem), contrary
to the fact n, = q.
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L 25.29

25.30

25.31

Extended
Cayley
Theorem

Therefore, n, = p. Let K be a Sylow ¢g-subgroup. Then [G : N(K)] =n, = p is the
smallest prime divisor of |G|. By the Exercise 25.20, N(K) is a normal subgroup
of G and G is not simple. [ |

Prove that there is no simple group of order p?q, where p and ¢ are primes.

Proof. TBRBEZBIL ch.2489E57,

If p = q, since the center of a p-group is nontrivial and the center is normal, we are
done. (Or by Sylow 1st Theorem, there exists H < G and |H| = p?.)

If p > ¢, then by Sylow 3rd Theorem, n, = 1. By Sylow 2nd Theorem, there exists
only one normal Sylow p-subgroup of G.

If p < ¢, then by Sylow 3rd Theorem, n, € {1,p,p?}. Since n, =1 (mod ¢) and p < g,
we have ng, # p.

If n, = 1, then by Sylow 2nd Theorem, the only one Sylow g-subgroup is normal.

If ng = p?, let Hy,Hs,...,Hyp be all the Sylow g-subgroup of GG. By Lagrange’s
Theorem, H; n H; = {e} if i # j. Thus, there are p?- (¢ - 1) elements of order g¢.

The remain p?q —p?- (¢ —1) = p? form the only one Sylow p-subgroup K of G. By
Sylow 2nd Theorem, K < G. [ |

If a simple group G has a subgroup K that is a normal subgroup of two distinct
maximal subgroups, prove that K = {e}.

Show that a finite group of even order that has a cyclic Sylow 2-subgroup is not
simple.

Let G be a group and H < G. If [G : H] = m, then there exists a homomorphism
0:G - S, with kerf < H.

Proof. Let X be the set of all left cosets of H. Let G acts on X by left translation.
That is, g- aH = gaH. For any g € G, define 0,: X - X, 0,(aH) = gaH. Then o,
is a bijection. That is, o, € Sx = S,,. Define 8 : G - Sx, 0(g) = 0,. Then 0 is a
homomorphism.
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1l

I

R

sl

R

Embedding
Theorem

AEH A

A& B

AEH C

If kekerd
= 0(k) =idg,, where idg, is the identity element in Sy
and the identity mapping on X

= 0(k)(aH) =idgs, (aH) =aH for all aH € X
take a=e

5 9(k)(H)=kH=H

= keH

= ker0cH

Let G be a group and H < G. If [G: H] =m, thenGSG’SAm.ﬁ

7. EETHEE 2| |G| WEHET BB, BRI Extended Cayley Theorem —4,

AR FE=EEEE MR —EERE: If n, # 1 and G is simple, then |G| divides
ny! /2. BESR B NIEIRZ S H BRI = P A6 P SR AR, AZR 6 FSE E & BHER VB
SRRRA Y BERRRAE H | (EIERZFI LB et —1E,

Prove thta there is no simple group of order 72 = 23 - 32,

Proof. AR XEFHH, n
f7e. EEFEMHIRTAE Nicholson, p.375, exa.8.

Prove thta there is no simple group of order 112 =24-7.
Proof. AN EEH. ]
Prove thta there is no simple group of order 144 = -24- 32

Proof. By Sylow 3rd Theorem, ng € {1,4,7, 10, 13,16}.

If ng =1, let H be the only one Sylow 3-subgroup of GG, then by Sylow 2nd Theorem,
H<«G.

If ng =4, let H be a Sylow 3-subgroup of G, then [G : N(H)] = n3 = 4. By Extended
Cayley Theorem, there exists a homomorphism 6 : G — S; and kerf is a proper
nontrivial normal subgroup of G.

If ng =16, let Hy, Hs, ..., Hig be all the Sylow 3-subgroups of G. Note that |H;| =9
fori=1,2,...,16.

Case I: If H;n H; = {e} for any i # j, then there are (|H;|-1) -n3 =8-16 = 128
elements in U} H; — {e}. There are 144 — 128 = 16 elements in (G - U;°,) U{e}.

These elements form the only one Sylow 2-subgroup. By Sylow 2nd Thereom, this
unique Sylow 2-subgroup is normal in G.

Shttp://goo.gl/sk3FJP
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Case II: If H;n H; # {e} for some i # j, then {e} # H;n H; < H; and |H;| = 32. It
follows that |H; n H;| = 3. On the other hand, |H;| = 3% implies that H; is abelian.
Thus, I{Z N Hj d Hz and I’IZ < N(Hz n HJ) Slmllarly, Hj < N(HZ N H])

Hi,Hj < N(Hz N Hj)

HZ'HJ‘ c ]\T(I'IZ N H]) 9= |Hz| divides |.Z\](.[‘.IZ N H])| divides |G| =24.32
IN(H; 0 Hy)| > |H; Hy| = g = 92 = o7 IN(H; n H;)| € {9,18,36,72,144}

IN(H;n H;)| > 36

By Extended Cayley Theorem, there exists a homomorphism 6 : G - S; and ker 6
is a proper nontrivial normal subgroup of G. [ ]

1|

)

R AEi] D Prove thta there is no simple group of order 180 = 22-32.5.

Proof. By Sylow 3rd Theorem, ng € {1,4,7,10}, n5 € {1,6, 4, 16, , 21,26, 31,36}
If ng =1, let H be the only one Sylow 3-subgroup of GG, then by Sylow 2nd Theorem,
H < G. n5=11is similar. So we assume that ns > 1.

If ng =4, let H be a Sylow 3-subgroup of G, then [G: N(H)] = n3 = 4. By Extended
Cayley Theorem, there exists a homomorphism 6 : G - S; and kerf is a proper
nontrivial normal subgroup of G.

If ng =10 and ns = 36, let Hy, H,, ..., Hyy be all the Sylow 3-subgroups of GG. Note
that |H;| =9 fori=1,2,...,16.

Case I: If H;n H; = {e} for any ¢ # j, then there are (|H;|-1)-n3 =8-10 = 80
elements in U2, H; — {e}. On the other hand, let K, Ky, ..., K3 be all the Sylow
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5-subgroups of G. Then there are 36-4 = 144 elements of order 5. But 80+ 144 = 224
exceed |G| =180, this case is impossible.

Case II: If H;n H; # {e} for some i # j, then {e} #+ H;n H; < H; and |H,;| =32 It
follows that |H; n H;| = 3. On the other hand, |H;| = 3% implies that H; is abelian.
r]:‘hllS7 Hz n Hj < Hz and Hl < N(HZ n H]) Slmllarly, Hj < N(Hz N H])

Hz' Hj SN(HZOH])

HiHj c N(HZ n H]) 9= |Hz| divides |N(Hl n H])| divides |G| =22.32.5
IN(H; 0 Hj)| > [HyH| = AT = 92 = o7 IN(H;n H;)| € {9,18,36,45,90, 180}

\N(H; 0 Hj)| > 36

[G: N(H,n H;)] <5.

By Extended Cayley Theorem, there exists a homomorphism 6 : G - S5 and ker 6
is a proper nontrivial normal subgroup of G.
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If ns =6, let K be a Sylow 5-subgroup of G, then [G: N(K)] =ns = 6.

[G:N(K)]=n5=6

Embedding Theorem

N(K) = 285 = 30 G 2 Greopy < Ag

p.418, exa.4

Jre N(K) <G, |z|=

Ag has no element of order 15

a contradiction

p.149, exa.5 Prove that A, does not contain a subgroup of order 6.

Proof. If A4 has a subgroup of H order 6, then [A4: H] =12/6 =2 and H < G. But
all the normal subgroup of A, are {e}, A; and {e, (12)(34), (13)(24),(14)(23)}. =

7 25.A Let G be a group and let G act on itself defined by a-g = g~'a for all a, g € G. Prove
that this is a group action.

Proof. a-e = ela = ea = a and a- (g192) = (q192)7'a = g3'g97'a = g5t (a-qr) =
(a-g1) - go- m

7. FE MREERK g-a =g 'a, RAER—E group action, A left R right 7
RERLIE,

#7% 25.B Determine the conjugacy classes of S, and Aj.

Proof. In Sy,

orbit(e) = {e},

orbit((12)) = {(12),(13), (14),(23), (24), (34)},
orbit((123)) = {(123),(132), (124), (142), (134), (143), (234), (243)},
orbit((1234)) = {(1234),(1243), (1324), (1342), (1423), (1432)},

orbit((12)(34)) = {(12)(34), (13)(24), (14)(23)}.

In A4,
orbit(e) = {e},
orbit((123)) = {(123), (134), (142), (243)},
orbit((132)) = {(132),(124),(143),(234)},
orbit((12)(34)) = {(12)(34),(13)(24),(14)(23)}.
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7 25.C

##7e 25.D

##7e 25.E

Foote,
p.-44, exe.6

In 54,

orbit(e)
orbit((12))
orbit((123))
orbit((1234))
orbit((12)(34)) =

In Q8 = {17_17ia_7;7j7 _j7k>_k | (_1)2 = 177;2 :j2 =k? = Z]k = _1aij = kak.] = —i},

117! =
(-Di(-1)7 =

T

(-i)i(-i) =
jiit =
(i) =
kik™ =
(=k)i(-k)™" =
orbit(z) =

In Dy ={1,a,a? a3 b,ba,ba®,ba® ||a| = 4,|b| = 2, aba = b}, suppose that

NG

a= b=

orbit(1)
orbit(a) =
orbit(a?)
orbit(b)
orbit(ba)

Show that the action of GG on itself by conjugation is faithful if and only if G has a
trivail center.

W

Proof. Recall that a group action is faithful if for all x € X, x- g = - g5 implies
that g1 = ga.

(=) Ifge Z(G), then for all a € G, a-g=gag™' =agg™ =a =a-e. Since the group
action is faithful, we get g =e.
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Foote,
p-126, prop.11

Nicholson,
p.375, exa.9

Fraleigh,
p.333, exe.38.6

Fraleigh,
p-332, exa.37.15

Fraleigh,
p.333, exe.38.4

Grillet, p.76, 15.

(<) Suppose that Z(G) = {e}.

If forallaeG, a-gi=a-gs
= forall aeG, giag;' = grag;"
= forall aeG, gia=grag;'q
= forallaeG, g3'gia=ag3'q
= g5 1€ Z(G) = {e}

= gygi=e

= 91=92

Prove that two permutations are conjugate in .S,, if and only if they have the same
cycle structure.

Proof. (=) By cycle decomposition theorem, any permutation o can be writed as
a product of some disjoint cycles. That is, o = vy, for some cycles ~v;, 72, ...,

Ym- Consider a conjugate gog=' of o. Then

go,g—l — nglfYQ...meg_l = g’ylg_l 'g’ng_l.“g’ymg_l'

W.L.O.G., suppose that vy = (ij---). Then gv197' = g(ij---)g7t = (g(i) g(j)---). You
can verify the last identity directly by compute g(ij---)g='(g(7)).

(<) If two cycles v = (ij---) and 4/ = (kl---) have the same length, then let o be the
permutation such that o(i) =k, 0(j) =k, ... Then oyo=! =(o(i) o(j)--) = (kl---) =
~’. That is, v and 7" are conjugate. [ ]
Show that no group of order p?¢? is simple when p and ¢ are primes.

Proof. Extended Cayley Theorem. [ ]
Prove that no group of order 160 is simple.

Proof. Extended Cayley Theorem. [ |
Every group of order 255 =3-5-17 is abelian.

Proof. commutator subgroup. [ ]
Prove that every group of order 5-7-47 is abelian and cyclic.

Proof. commutator subgroup. [

Show that 1< A, €S, is the only composition series of S,, when n > 5.

Proof. Recall that A, is simple for every n > 5. Then by the proof of Exercise
25.21. [ ]
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Grillet, p.76, 16. Show that a group of order p™, where p is prime, has a composition series of length
n.

Proof. By Cauchy Theorem, there exists an element g of order p and a subgroup
H, ={g) of order p.

For 1 <i < n, if H; is a subgroup of order p’. Recall that H; < N(H;). Consider
the quotient group N(H;)/H;. By Exercise 24.43, H; + N(H;), so N(H;)/H,; is
nontrivial and p divides |N(H;)/H;|. By Cauchy Theorem again, there exists a
subgroup H;,1 of N(H;)/H;, which is of order p. By Correspondence Theorem,
there exists H;,; which contains H; and |H;,1/H;| = |H.| = p and |H;,1| = p-|H;| = p™**.

N(H,) N(H,)/H;

Since |H;yq| = pi*! and [Hyyq @ H;] = p, by Exercise 25.20, H; < H;;1. Therefore, we
have a composition series {e} = Hy < Hy < Hy < ---H,,_1 < H,, = G of length n. [ ]

7. FLEEMEETF Sylow 1st Theorem HJ—EB53,

25 Chapter 32

#fH Galois Theory II

If char F =0 or |F| < oo, E is the splitting field for some polynomial in F[z], then
by the fundamental theorem of Galois theory, we have

big Gal(E[F) F small

| +
| |
[ |Gal(E/F)|/|Gal(E/F)| [

- |
l |
| |
! Gal(E/K) K |
| |
| |
[ |Gal(E/K)| [
| - |
| |
+ [

small {e} E big

32.4, 32.10, 32.12, 32.13

FE#H Solvable
25.21, 32.27, 32.28, 32.29, 32.30
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32.1

32.2
32.3

32.4

32.5

32.6

Let E be an extension field of Q. Show that any automorphism of E acts as the
identity on Q.

Determine the group of field automorphisms of GF'(4).

Let E be an extension field of the field . Show that the automorphism group of
F fixing F' is indeed a group.

Given that the automorphism gorup of Q(v/2,/5,v/7) is isomorphic to Zy®Zq & Zs,,
determine the number of subfields of Q(ﬂ, \/5, V7 ) that have degree 4 over Q.

Proof. Let E = Q(\/i, V5, \/7) and

V2> -2 V22 V22
VBB L b={ VBB L c={ VBB
VT->VT7 VT-VT7 VT -VT
Then Gal(E[Q) = (a,b,c) = Zo & Zo & Zs.
By the fundamental theorem of Galois theory, we have
blg GGZ(E/Q) ~ Ty ® Zig & Zig Q sn#all
I |
| 4 |
| |
| |
| |
| H =" K |
|
I |
| |
| |
| |
4 |
small {e} E=Q(V2,v/5,V7) big

In Zo ® Zy & Zo, a subgroup H has index 4 if and only if H is of order 2. Thus,

H = (h) for some h of order 2. There are 7 elements in Zo ® Zy ® Zs whose order are
2. Therefore, there are 7 subfields of @(\/5, NGRV4d ) that have degree 4 over Q. =

Let E be an extension field of a field F' and let H be a subgroup of Gal(E/F).
Show that the fixed field of H is indeed a field.

Let E be the splitting field of x4 + 1 over Q. Find Gal(E/Q). Find all subfields of
E. Find the automorphisms of E that have fixed fields Q(v/2), Q(v/-2), and Q(3).
Is there an automorphism of E whose fixed field is Q7

Proof.
e Splitting Field: Note that 28 - 1= (2% -1)(z*+1) and

-1

(z-1)(7 - ws)(x - Ws)(x Ws)(m ws)(l' Ws)(x Ws)(x Ws)
(z = 1) (= —wi) (z ~wi) (=~ wi) (2 - ws) (z — wd) (2 — w3) (2 — W)
(2! - (2 - ws) (2~ wi) (z - w3) (z - wf)
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Thus, a74+1:(x—w8)(x wd)(z - wi)(z-wf).

Since wg = cos 2= + jsin & . \/_ + zi the splitting field E of z*+ 1 over Q is

Q(ws) = Q(V2, z) (Apply Elsonstom s Criterion with p=2on (x+1)*+1, one

can show that x*+ 1 is irreducible over Q. It follows that x*+ 1 is the minimal
4

polynomial of wg and Q < Q(ws) < Q(V/2,4).
4

Galois Group: The minimal polynomial of v/2 over Q is 22 —2. The minimal
polynomial of i over Q is 22 + 1. By theorem, if f € Gal(E/Q), then f(1/2) €
{V2,-v/2} and f(i) € {i,~i}. Let

[ VEe2 [ Ve
i N
Then Gal(E|Q) = (0,7) 2 Zy & Zs.
Draw the Subgroup Lattice Diagram of the Galois Group:

Gal(E/@) ~ o ® 7o

<0) \<T‘O->/ <T>
(1)
Use the Galois Correspondence to Determine the Fixed Field of the
Subgroups of the Galois Group:

GGZ(E/Q) Lo ® 7o @

%\/?\
M

Q(V2,1)
In this case, since a(i) =1, the fixed field of (o) is Q(¢). Similarly, since
ro(V3i) = (0 (VD)o (0)) = 7((-v/2) 1) = 7(~2) - 7(i) = (~/2) - (~1) = V2,

we get that the fixed field of (o7) is Q(+/2i). The fixed field of the auto-
morphisms in (1) is Q(v/2). The fixed field of the identity mapping on E is

Q.
Draw the Subfield Lattice Diagram of the Splitting Field:

I

Q(i) Q(V/2i) Q(V2)

~N L7

Q(v2,4)
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32.10 Let E = Q(v/2,V/5). What is the order of the group Gal(E/Q)? What is the order

of Gal(Q(V10)/Q)?
Proof. Let
(VEe B [VEeB
il RV BV AR (V-
Then Gal(E/Q) = (0,7) 2 Zs & Zy. By the fundamental theorem of Galois theory,
we have
big Gal(E|Q) 27y & Zs Q sn#all

|

I ) l

[ < [

| |

| |

i Gal(E/Q(v/10)) Q(V10) |

I |

| |

| |

| |

|
small {e} E=Q(V2,V5) big
Therefore, (5/Q)
N Gal(E/Q
QI = G g/
and
Gal(Q(v/10/Q)| = N ELD)

Gal(E/Q(VI0))]

32.12 Determine the Galois group of x'° — 10z + 21 over Q.

Proof. ' —10x+21 = (x - 3)(x - 7). The splitting field of z'° — 10x + 21 over Q is
Q and Gal(Q/Q) = {e}. u

32.13 Determine the Galois group of z2 + 9 over R.

Proof. 22+ 9 = (x — 3i)(x + 3i). The splitting field of 2 +9 over Q is Q(7). and
Gal(Q(2)/Q) ={e, o}, where o (i) = —i. |

32.18 Determine the Galois group of 22 — 1 over Q and z3 — 2 over Q.

Proof. For 3 -1.
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e Splitting Field: Note that 23-1= (z-1)(22+2+1) = (x-1)(z-w3)(z-w3).
The splitting field F of 23 — 1 over Q is Q(ws3). Note that the splitting field is
NOT Q(\/g, i) even ws = ‘71 + 2@ because the minimal polynomial of w3 over

4
Qisz2+x+1 and Q < Q(ws) <Q(V/3,7).

2

e Galois Group: The minimal polynomial of ws over Q is z2+x+1. By theorem,
if feGal(E/Q), then f(ws) € {ws,w?}. Let 0 € Gal(E/Q) and o(ws3) = w?.
Then Gal(E/Q) = (o) = Zs.

e Draw the Subgroup Lattice Diagram of the Galois Group:

Gal(E/Q) 2 Z,

(1)

e Use the Galois Correspondence to Determine the Fixed Field of the
Subgroups of the Galois Group:

Gal(E/Q) = Z, Q

(1) Q(ws)
e Draw the Subfield Lattice Diagram of the Splitting Field:

Q

Q(w?,)

Proof. For x3 - 2.
e Splitting Field: Note that 23 -2 = (v - V/2)(z - ¥/2w3) (7 — ¥/2w?). The
splitting field E of 23 — 2 over Q is Q(V/2,ws).

e Galois Group: The minimal polynomial of ¥/2 over Q is 3 —2. The minimal
polynomial of ws over Q is 22 + 2 + 1. By theorem, if f € Gal(E/Q), then

F(2) € {32, V2w, ¥/2w2} and f(ws) € {ws,w?}. Let
J:{f’/ﬁﬁf’/ﬁwg 72{3/5*3/5

W3 = W3 w3 —> w3

You can verify that |o| = 3 and |7| = 2 and o7 = 702. Then Gal(E/Q) =
{1,0,0%, 7,170,702} = S3 = Ds.
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e Draw the Subgroup Lattice Diagram of the Galois Group:

Gal(E/Q) = S;

" \

e Use the Galois Correspondence to Determine the Fixed Field of the
Subgroups of the Galois Group:

Gal(E/Q) = Ss

/\

Q(¥/2,ws3)

In this case, since o(ws) = ws, the fixed field of (o) is Q(ws). Since 7(/2) = V/2,
the fixed field of (7) is Q(¥/2). Similarly, since
70 (V2ws) = 7(0(V2)o(w3)) = 7(V2ws - w3) = V2wi = V2w,

we get that the fixed field of (7o) is Q(3/2ws).
e Draw the Subfield Lattice Diagram of the Splitting Field:

/Q
Q(ws)
Q(V2) Q(V2ws) Q(V2w3)
i
Q(V2,ws

25.21 Prove that the only nontrivial proper normal subgroup of S5 is As.
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Proof.

Suppose that
normal N normal = normal

=

=
Ap is simple

=

It

=
As+H#S5

=

It

H<G, HAg<S5

HnAg={e}, h¢Ag
{
=
H<Sx

|
=

32.27 Show that S5 is not solvable.

Proof. By Exercise 25.21, the only nontrivial proper normal subgroup of S; is As.
In addition, As is simple. Thus, there are only two group series of S5. That is,

{€}§H§S5 and As #+ H < S5

HﬂA5<]S5
HﬂA54A5

HﬁAE,:AE, or {e}

HﬂA5:A5
As < H

|As| = 60 < |H| < 120 = |S5],
a contradiction because |H| divides |S5|.
Hn A5 = {6}

_ |H]- 45|

120 = |S5| > |[HA5| = A =60 |H|
|H| <2
|H] =2

H = (h) for some h € S5 with |h| =2
h = (ij) for some i # j€{1,2,3,4,5}

ghg™' € H for any g € Ss,

a contradiction because |H| = 2.

{e} <« S5 and {e} <« A5 < S5. Both group series has a non-abelian factor.

32.28

Proof. D,, ={{a,b]|a|] = n,|b| = 2,aba = b} always has a group series {1} ?(a) ) D,

each factor is abelian.

32.29

Proof. We use induction on n. When p = 1, G = Z, is solvable. Suppose that a
group of order p" is solvable and |G| = p™*!. By Sylow 1st Theorem, there exists a
normal subgroup H of G which is of order p®. By the induction hypothesis, H is
solvable. Thus, we have H is solvable and G/H = Z, is solvable, by Theorem 32.4

in p.563, G is also solvable.

Show that the dihedral groups are solvable.

=y

Show that a group of order p™, where p is prime, is solvable.
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32.30 Show that S, is solvable when n < 4.

Proof. S; and S, are abelian.

{e}izf((123))i235g.

27.0®7o ~73 ~75
—_

{e} @ ((12)(34),(13)(24)) < A, < Su.

26 Chapter 33

#8#H Some Propertis of ®,,(z)
33.4, 33.5, 33.8, 33.10,

REAE DARGESE

33.13, 33.14, 33.17

HEEERENER, BRMATLUEREE 0, (x), B n BARE
#E#H Advanced Exercises

33.19, 33.20, 33.7, 33.9, 33.12, 33.11, 33.15

7EfH Galois Theory
33.16, 33.18, 33.21

33.1 Determine the minimal polynomial for cos (%) +17sin (%) over Q.

Proof. cos (%) + isin(%) = Cos (%’r) + isin(%’r) = wg, a primitive 6th root of unity.
Its minimal polynomial is ®¢(x). |

33.2 Factor z'2 — 1 as a product of irreducible polynomials over Z.

Proof. By Theorem 33.3, ®,(x) is irreducible over Z for any n.

21?2 =1 =0 (2) Py (2)P3(2)Py(2)Pg(2)P1o(2).

33.3 Factor 28 — 1 as a product of irreducible polynomials over Zs,Zs, and Zs.

Proof.

8
o]
I
—_
Il

Oy (2)Do(2)Py(2)Ps(2) € Z[ 2]
(z-1)(z+1)(2*+1)(2* +1) € Z[2]
= (x-1D)(z-1)(2*-1)(2* - 1) € Zy[x]
(z-1)% € Zy[x]
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Recall that

P -1=(z-1)(z+1)(2*+1)(z* +1) e Z[x].

We need to know the irreducibility of 2*+1 over Zs. Consider all the monic quadratic

polynomial in Zs[z] are

AN

r+1 <«

has root 0

has root 1

has root 0

257
22FT
224+7%1  has root 1

T+ x+2 <«

22+7x  has root 0
22497 %1  has root 2

22 +2xr+2 <~

We cancel the polynomial which has a root in Zs. Then 22 + 1, 22 + z + 2 and
22 + 22 + 2 are all the monic irreducible quadratic polynomial over Zs.

Since x* + 1 has no root in Zs, if * + 1 is reducible, then z* + 1 must be a product
of two monic irreducible quadratic polynomials. By some computation.

(2% +1)?

(2% +1+2)?

(2% + 22 + 2)?

(22 +1)(2® + 7 +2)

(2 +2+2) (2% + 22 + 2)

(2% +1)(2? + 22 + 2)

Therefore,

¥ -1=(x-1)(z+1)(2*+1)(2% + 2 +2)(2* + 22 + 2) € Zs[z].

H+ H o+ H

2+ 1
t+1
zt+1
2+ 1
zt+1

2+ 1

8

|
—_
I

(2 +2) and (22 - 2) both have no root in Zs, they are irreducible over Zs.

33.4 For any n > 1, prove that the sum of all nth roots of unity is 0.

Proof. Let w, be a primitive nth root of unity.

2" —1=(z-wy)(rv-w?)(z-wd)(z-wh).

Compare the coefficients.
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(z-1)(z+1)(2®+1)(a* +1) € Z[x]
(z-1)(z+1)(2®-4)(2* - 4) € Zs[ ]
(z-1)(z+1)(x+2)(x-2)(2*-4) € Zs[]

(z-1)(z+1)(x+2)(x-2)(2*+2) (2% - 2) € Zs[x]



33.5

33.6

33.7

33.8

33.9

For any n > 1, prove that the product of the nth roots of unity is (-1)"*.
Proof. See Exercise 33.4. [ |

Let w be a primitive 12th root of unity over Q. Find the minimal polynomial for
w* over Q.

Proof. w* is a primitive 3th root of unity over Q. Its minimal polynomial is ®3(z).
|

Let F be a finite extension of Q. Prove that there are only a finite number of roots
of unity in F.

Proof. Lemma. 7}1_{1010 ¢(n) = oo, where ¢p(n) = §{d € Z* | ged (n,d) = 1}.

If [F: Q] =n and there are infinitely many number of roots of unity in F', then by
Lemma, there exists w,, € F' such that ¢(m) >n and

Q < Qwm)<F,
¢(m)

a contradiction. m

For any n > 1, prove that the irreducible factorization over Z of "1+ 2" 2+---+x+1
is [T ®4(x), where the product runs over all positive divisors d of n greater than 1.

Proof.

2" -1 = (z—t)(a"+a" 2+ v+ 1)
[]®a(2)

dln

Cy(z) [] Pa()

1<dln

(1) [] ®a(x)

1<dln

If 2" + 1 is prime for some n > 1, prove that n is a power of 2. (Prime of the form
27 + 1 are called Fermat primes.)

w7e. EEEHERE A, Fermat & ¥ HE EE Y KAk, Rz

2241 = 5
22 41 = 17
2241 = 17
22' 11 = 257

22 11 = 65537

ZEERER, Al Fermat B RERAN 22" + 1 EMFHRER, BRAHERM
FHUBH)E EH AR, HS 22 + 1 BAREH,
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33.10

33.11

33.12

33.13

Prove that ®,(0) =1 for all n > 1.

Proof. Use induction on n and

" -1=(z-1) [] ®a(x).

1<d|n

Prove that if a field contains the nth root of unity for n odd, then it also contains
the 2nth roots of unity.

Proof. 1t is immediately follows from Exercise 33.12.

Another method: When n = 1, the assertion holds obviously. If a € F' is a primitive
nth root of unity, then ®,,(«) = 0. Since —« € F' and n > 1 is odd, by Exercise 33.13,
we have ®y,(-a) = &, () = 0. That is, F' contains a primitive 2nth root of unity
—a. [ |

Let m and n be relatively prime positive integers. Prove that the splitting field of
am® — 1 over Q is the same as the splitting field of (z™ —1)(z" - 1) over Q.

Proof. Lemma. Suppose that ged (m,n) = 1. Let w,, and w, be a primitive mth
and nth root of unity, respectively. Then w,, - w, = Wy, is a primitive mnth root of
unity.

Proof of the Lemma. Since ged (m,n) =1, (w,) n(w,) = {1}. If (wpw,)® =1,
then wg, = (w3) ™! € (W) N {wn) = {1} and wg, = 1 = wg. It follows that m | s and n | s.
Since ged (m,n) = 1, we have mn | s. Note that (w,w,)™ = (W)™ (W)™ = 1.
Therefore, mn is the multiplicative order of w,,w, and w,,w, = Wmm.

The splitting field of 2™ -1 over Q is Q(wyn). The splitting field of (z™-1)(z"-1)
over Q is Q(wy,,wn)-

Since W = wy, and W™, = w,, we get Q(wpm,wn) € Q(wWmn)-

By Lemma, w,,,, € Q(wpm,w,). Therefore, Q(wmn) € Q(wpm,wy)- [ ]
Prove that ®,,(z) = ®,(-z) for all odd integers n > 1.

Proof. [J3i&—] First note that deg ®y,(z) = deg ®,,(-x). If —w is a root of &, (-z),

n is odd
then |w| = n and |- w| = lem(] - 1], |w|) = lem(2,n) £ 2n. That is, —w is a root
of ®y,(x). It follows that &, (-z) | P2, (x). Hence ®,(-z) = Po,(x) because they
have the same degree.

[7335Z] Use induction on n. When n = 3,

Py, (2) = Pg(z) =2? —w+ 1= (—2)? + (-2) + 1 = P3(-2).
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Suppose that ®or(x) = @p(-z) holds when 1 < k <n and k is odd. Then
v -1 (2"-1) (z" +1)

by, (x = = )
() T 0@ 1 &) T o)
d2n d|2n d|2n
d+2n d odd d even
d+2n
gcd(i2)=1 (ZEn—l) ' ({L‘n-i-l) _ M . (l‘n+1)
[T ®4(x) TI Pa(z) I @ [T ®on(x)
dln d|2n dln 2k|2n
d odd d even odd k+n
d+2n
m el (zn+1) (z"+1)
k c‘)gd k (‘)gd
k+n 1<k<n
inductionéhypothesis (.CI]” + 1) _ @1(—1') . (.Tn + 1)
Py(x) - kH Pp(-x)  Po(z) Pi(-2)- kH Py (-2)
k c‘)gd k c‘)Zd
1<k<n 1<k<n
) S SRS I (G0 L)
x+1 ]1'[ O () {I O ()
k c|)gd k c|)gd
1<k<n 1<k<n

= ®,(-x)

33.14 Prove that if p is a prime and k is a positive integer, then @, (z) = <I>p(aspk_l). Use
this to find ®g(x) and Por(z).

Proof.

k
P -1

IT ®a(x)
dlp*
d#p”

(zP" )P -1
[T ®a(z)

dlpk~1
(zP" )P -1

k-1
P -1

(I)pk (I)

p p
Py ()=l _xzF-1
P73 oy =T

- q)p(mpk_l)

Dy(z) = Pos(2) = Do) = Bo(a*) = 2* + 1.
Bor(2) = aa(2) = D3(2¥ ) = By(2) = (2°)% + 2 + 1.
|

33.15 Prove he assertion made in the proof of Theorem 33.5 that there exists a series of
subgroups Hy c Hy c ---c H; with |H;q: Hy| =2 for i =0,1,2,...,t - 1.
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33.16 Prove that z° — 1 and 27 — 1 have isomorphic Galois groups over Q.

33.17 Let p be a prime that does not divide n. Prove that ®,,(z) = ®,,(2?)/®,(x).

33.18
33.19

33.20

33.21

Proof. Use induction on n. When n =1,

P -1 P

Byu(x) = 0,(r) = 55 = T = 1 (a7) 1),

Suppose that ®,s(z) = ®;(2?)/Ps(z) for any s <n. Then

apr -1

[T ®a(z)

dlpn
d+pn

(I)pn@)

(zP)" -1
[T ®a(2) H (I)pS(fE)

ptd

dln d—ps
sln
s#n

(a7)" -1

("

SN
(zP) -1
R T|I s(27)
sin sln
SFn

D, (zP)
D, ()

sFn

Prove that the Galois groups of z!° -1 and 28 — 1 over Q are not isomorphic.

Let E be the splitting field of 25 — 1 over Q. Show that there is a unique field K
with the property that Q c K c E.

Let E be the splitting field of 25 — 1 over Q. Show that there is no field K with the
property that Qc K c

Proof. Since 25 -1 = H(w wg), where wg is a primitive 6th root of unity, the

splitting field F for 2% - 1 over Q is Q(wg). The minimal polynomial of wg is $g(x).
Thus, [E: Q] = deg ®s(z) = 2.

If K is a subfield of F and Q < K < F, consider the tower of fields

2
—_—~

Q<K<FE,
then K =Q or K = F. [

Let w = cos(27/15) —isin (27/15). Find the three elements of Gal(Q(w)/Q) of
order 2.
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7 33.A

7 33.B

Use the identity

" -1= H@d(l‘)

dln

to determine the cyclotomic polynomials ®g(x) and $qo(z).

Proof.
x8-1
R E NG
(1) + 1)
O (x 1(x)
= zt+1.
x4 -1
N OING)
@21y 1)
Dy ()P5(T)
= 2+ 1.
Du(a) - 212 21
Dy (1) Do (2)P3(2)Dy(x)Pg(x)
R E)
D1 (2)0a(a)5(T) B (1) P (w)
_ @)1
2 +1
_ (2+1) (2t - 22+ 1)
22+T
= 2t -2+ 1.
O ®(x) =
O ®y(x) =
O ®;3(x) =
O $y(x) =
0 ®5(x) =
O $g(x) =
o ®,(x) =
O ®g(x) =
O $g(x) =
0 ®yo(x) =
O ®q1(z) =
O ®pa(z) =

258



	Chapter 0
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20
	Chapter 21
	Chapter 22
	Chapter 24
	Chapter 25
	Chapter 32
	Chapter 33

